- •Математика в экономике Учебное пособие
- •Оглавление
- •Предисловие
- •Программа дисциплины Цели и задачи освоения учебной дисциплины
- •Содержание дисциплины
- •I. Линейное программирование
- •1.1. Общая задача линейного программирования Задачи математического и линейного программирования
- •Математические модели простейших экономических задач Задача использования ресурсов
- •Задача о составлении рациона питания
- •Каноническая форма задачи линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Задачи для самостоятельного решения
- •1.2. Графический метод решения задач линейного программирования Задача с двумя переменными
- •Графический метод решения задач линейного программирования с п переменными
- •Задачи для самостоятельного решения
- •1.3. Основные положения о решении злп
- •Теоремы о взаимосвязи опорных решений и угловых точек области допустимых решений
- •1.4. Симплексный метод решения задач линейного программирования Симплекс-метод
- •Симплексные таблицы
- •Задачи для самостоятельного решения
- •1.5. Теория двойственности Виды математических моделей двойственных задач
- •Общие правила составления двойственных задач
- •Первая теорема двойственности
- •Вторая теорема двойственности
- •Задачи для самостоятельного решения
- •1.6. Транспортная задача линейного программирования
- •Формулировка транспортной задачи
- •Математическая модель транспортной задачи
- •Опорное решение транспортной задачи
- •Необходимое и достаточное условия разрешимости транспортной задачи
- •Метод вычеркивания
- •Методы построения начального опорного решения Метод северо-западного угла
- •Метод минимальной стоимости
- •Переход от одного опорного решения к другому
- •Распределительный метод
- •Метод потенциалов
- •Особенности решения транспортных задач с неправильным балансом
- •Алгоритм решения транспортной задачи методом потенциалов
- •Транспортная задача по критерию времени
- •Задачи для самостоятельного решения
- •Глава II. Теория игр
- •2.1. Математические модели конфликтных ситуаций
- •2.2. Чистые и смешанные стратегии Основная теорема теории игр
- •Основная теорема теории игр
- •Геометрическая интерпретация игры 2x2, игры 2xп.
- •Общие методы решения конечных игр. Сведение их к задачам линейного программирования
- •Игры с «природой».
- •Задачи для самостоятельного решения
- •Глава III. Теория массового обслуживания
- •3.1. Марковский случайный процесс
- •Понятие о марковском процессе
- •Потоки событий. Простейший поток.
- •Граф состоянии. Размеченный граф состояний
- •Уравнения Колмогорова для вероятностей состояния
- •Финальные вероятности состояний
- •3.2. Системы массового обслуживания
- •Смо с отказами
- •Смо с неограниченным ожиданием
- •Формулы для установившегося режима
- •Смо с ожиданием и с ограниченной длиной очереди
- •Формулы для установившегося режима
- •Задачи для самостоятельного решения
- •Глава IV. Целочисленное программирование
- •4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
- •Графический метод решения задач
- •Прогнозирование эффективного использования производственных площадей
- •Метод Гомори
- •Задачи для самостоятельного решения
- •Глава V. Нелинейное программирование
- •5.1. Задачи нелинейного программирования
- •Общая постановка задачи нелинейного программирования
- •Графический метод решения задач нелинейного программирования с двумя переменными
- •Задача с нелинейной целевой функцией и нелинейной системой ограничений
- •5.2. Метод множителей Лагранжа. Постановка задачи
- •Расчет экономико-математической модели при нелинейных реализациях продукции.
- •5.3. Дробно-линейное программирование Математическая модель задачи
- •Алгоритм решения.
- •Сведение экономико-математической модели дробно-линейного программирования к задаче линейного программирования
- •Задачи для самостоятельного решения
- •Глава VI. Динамическое программирование
- •6.1. Постановка задачи динамического программирования
- •Некоторые экономические задачи, решаемые методами динамического программирования Оптимальная стратегия замены оборудования
- •Оптимальное распределение ресурсов
- •Распределение инвестиций для эффективного использования потенциала предприятия
- •Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
- •Задачи для самостоятельного решения
- •Глава VII. Сетевые модели
- •7.1. Основные понятия сетевой модели Основные понятия
- •Расчет временных параметров сетевого графика
- •Построение сетевого графика и распределение ресурсов
- •Учет стоимостных факторов при реализации сетевого графика
- •Обоснование привлекательности проекта по выпуску продукции
- •Минимизация сети
- •Алгоритм решения
- •Нахождение кратчайшего пути
- •Задача замены автомобильного парка
- •Задачи для самостоятельного решения
- •Тест для самоконтроля
- •Список используемой литературы
- •Список рекомендуемой литературы Основная литература:
- •Дополнительная литература:
- •Ключ к тесту для самоконтроля
Алгоритм решения.
Находим область допустимых решений.
Определяем угловой коэффициент к и устанавливаем направление поворота целевой функции.
Находим точку max(min) целевой функции или устанавливаем неразрешимость задачи.
Экономическая интерпретация задач дробно-линейного программирования
Математическая модель задачи дробно-линейного программирования может быть использована для определения рентабельности затрат на производство изделий, рентабельности продаж, затрат в расчете на рубль выпускаемой продукции, себестоимости изделий [21].
Обозначим: rj — прибыль предприятия от реализации единицы изделия j-гo вида;
xj — количество выпущенной продукции j-гo вида;
sj — цена единицы продукции j-гo вида;
cj — себестоимость производства единицы изделия j-гo вида;
dj — затраты на производство одного изделия j-гo вида.
Задача рентабельности (Р3) затрат на производство изделий имеет вид
(59)
Задача рентабельности (Рп) продаж имеет вид
(60)
Задача определения затрат (Зр) в расчете на рубль товарной продукции записывается в виде
Зр=
(61)
Задача нахождения себестоимости изделия записывается как
(62)
Указанные математические модели имеют системы ограничений в зависимости от условий задачи.
Применение дробно-линейного программирования для определения себестоимости изделий.
Рассмотрим использование дробно-линейного программирования для нахождении себестоимости изделий.
Пример 42. Для производства двух видов изделий А и В предприятие использует три типа технологического оборудования. Каждое из изделий должно пройти обработку на каждом из типов оборудования. Время обработки каждого из изделий, затраты, связанные с производством одного изделия, даны в таблице.
Оборудование I и III типов предприятие может использовать не более 26 и 39 ч соответственно, оборудование II типа целесообразно использовать не менее 4 ч.
Определить, сколько изделий каждого вида следует изготовить предприятию, чтобы средняя себестоимость одного изделия была минимальной.
Таблица 22 - Затраты времени на обработку изделий
Тип оборудования
Затраты времени на обработку одного
изделия, ч
А
В
I
II
III
Затраты на производство одного
изделия, тыс. р.
2
1
12
2
8
1
3
3
Решение. Составим математическую модель задачи. Пусть х1 — количество изделий вида А, которое следует изготовить предприятию, х2 — количество изделий вида В. Общие затраты на их производство составят (2x1 + 3х2) тыс. р., а средняя себестоимость одного изделия будет равна (2х1+ 3х2)/(х1 + х2). Математическая модель задачи примет вид
L = (2х1 + 3х2)/(х1 + х2)→ min
Рисунок
28
при ограничениях:
Δ АВС область допустимых решений.
Найдем х2:
L = (2х1+3х2)/(х1+х2), 2x1 + 3x2 = Lx1 + Lx2, x2(3-L) = x1(L-2),
x2 = x1(L - 2)/(3 — L) = kx1.
Угловой коэффициент прямой равен к = (L — 2)/(3 — l), тогда
Так как dk/dL > 0, то функция к = (L — 2)/(3 — L) возрастает. Это соответствует вращению прямой против часовой стрелки. Следовательно, в точке С целевая функция будет иметь наименьшее значение (глобальный минимум). Найдем координаты точки С. Решая систему
получим С(3,1), хопт = (3,1), L = 9/4.
Следовательно, предприятию следует выпускать 3 изделия вида А и 1 изделие вида В. При этом средняя себестоимость одного изделия будет минимальной и равной 2,25 тыс. р.
