- •Математика в экономике Учебное пособие
- •Оглавление
- •Предисловие
- •Программа дисциплины Цели и задачи освоения учебной дисциплины
- •Содержание дисциплины
- •I. Линейное программирование
- •1.1. Общая задача линейного программирования Задачи математического и линейного программирования
- •Математические модели простейших экономических задач Задача использования ресурсов
- •Задача о составлении рациона питания
- •Каноническая форма задачи линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Задачи для самостоятельного решения
- •1.2. Графический метод решения задач линейного программирования Задача с двумя переменными
- •Графический метод решения задач линейного программирования с п переменными
- •Задачи для самостоятельного решения
- •1.3. Основные положения о решении злп
- •Теоремы о взаимосвязи опорных решений и угловых точек области допустимых решений
- •1.4. Симплексный метод решения задач линейного программирования Симплекс-метод
- •Симплексные таблицы
- •Задачи для самостоятельного решения
- •1.5. Теория двойственности Виды математических моделей двойственных задач
- •Общие правила составления двойственных задач
- •Первая теорема двойственности
- •Вторая теорема двойственности
- •Задачи для самостоятельного решения
- •1.6. Транспортная задача линейного программирования
- •Формулировка транспортной задачи
- •Математическая модель транспортной задачи
- •Опорное решение транспортной задачи
- •Необходимое и достаточное условия разрешимости транспортной задачи
- •Метод вычеркивания
- •Методы построения начального опорного решения Метод северо-западного угла
- •Метод минимальной стоимости
- •Переход от одного опорного решения к другому
- •Распределительный метод
- •Метод потенциалов
- •Особенности решения транспортных задач с неправильным балансом
- •Алгоритм решения транспортной задачи методом потенциалов
- •Транспортная задача по критерию времени
- •Задачи для самостоятельного решения
- •Глава II. Теория игр
- •2.1. Математические модели конфликтных ситуаций
- •2.2. Чистые и смешанные стратегии Основная теорема теории игр
- •Основная теорема теории игр
- •Геометрическая интерпретация игры 2x2, игры 2xп.
- •Общие методы решения конечных игр. Сведение их к задачам линейного программирования
- •Игры с «природой».
- •Задачи для самостоятельного решения
- •Глава III. Теория массового обслуживания
- •3.1. Марковский случайный процесс
- •Понятие о марковском процессе
- •Потоки событий. Простейший поток.
- •Граф состоянии. Размеченный граф состояний
- •Уравнения Колмогорова для вероятностей состояния
- •Финальные вероятности состояний
- •3.2. Системы массового обслуживания
- •Смо с отказами
- •Смо с неограниченным ожиданием
- •Формулы для установившегося режима
- •Смо с ожиданием и с ограниченной длиной очереди
- •Формулы для установившегося режима
- •Задачи для самостоятельного решения
- •Глава IV. Целочисленное программирование
- •4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
- •Графический метод решения задач
- •Прогнозирование эффективного использования производственных площадей
- •Метод Гомори
- •Задачи для самостоятельного решения
- •Глава V. Нелинейное программирование
- •5.1. Задачи нелинейного программирования
- •Общая постановка задачи нелинейного программирования
- •Графический метод решения задач нелинейного программирования с двумя переменными
- •Задача с нелинейной целевой функцией и нелинейной системой ограничений
- •5.2. Метод множителей Лагранжа. Постановка задачи
- •Расчет экономико-математической модели при нелинейных реализациях продукции.
- •5.3. Дробно-линейное программирование Математическая модель задачи
- •Алгоритм решения.
- •Сведение экономико-математической модели дробно-линейного программирования к задаче линейного программирования
- •Задачи для самостоятельного решения
- •Глава VI. Динамическое программирование
- •6.1. Постановка задачи динамического программирования
- •Некоторые экономические задачи, решаемые методами динамического программирования Оптимальная стратегия замены оборудования
- •Оптимальное распределение ресурсов
- •Распределение инвестиций для эффективного использования потенциала предприятия
- •Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
- •Задачи для самостоятельного решения
- •Глава VII. Сетевые модели
- •7.1. Основные понятия сетевой модели Основные понятия
- •Расчет временных параметров сетевого графика
- •Построение сетевого графика и распределение ресурсов
- •Учет стоимостных факторов при реализации сетевого графика
- •Обоснование привлекательности проекта по выпуску продукции
- •Минимизация сети
- •Алгоритм решения
- •Нахождение кратчайшего пути
- •Задача замены автомобильного парка
- •Задачи для самостоятельного решения
- •Тест для самоконтроля
- •Список используемой литературы
- •Список рекомендуемой литературы Основная литература:
- •Дополнительная литература:
- •Ключ к тесту для самоконтроля
Глава IV. Целочисленное программирование
4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
Некоторые задачи линейного программирования требуют целочисленного решения. К ним относятся задачи по производству и распределению неделимой продукции (выпуск станков, телевизоров, автомобилей и т.д.).
В общем виде математическая модель задачи целочисленного программирования имеет вид [8]
(48)
при
ограничениях:
хj
≥0
— целое, i
=
1, т,
j
=
1, п.
(49)
Оптимальное решение задачи часто не является целочисленным. Его можно округлить до ближайших целых чисел. Однако такое округление может дать решение, не лучшее среди целочисленных решений, или привести к решению, не удовлетворяющему системе ограничений. Поэтому для нахождения целочисленного решения нужен особый алгоритм. Такой алгоритм предложен Гомори и состоит в следующем. Симплексным методом находят оптимальное решение задачи. Если решение целочисленное, то задача решена. Если же оно содержит хотя бы одну дробную координату, то накладывают дополнительное ограничение по целочисленности и вычисления продолжают до получения нового решения. Если и оно является нецелочисленным, то вновь накладывают дополнительное ограничение по целочисленности. Вычисления продолжают до тех пор, пока не будет получено целочисленное решение или показано, что задача не имеет целочисленного решения.
Пусть получено оптимальное решение Хопт=(f1,f2,…,fп, 0,...,0), которое не является целочисленным, тогда последний шаг симплексной таблицы имеет следующий вид:
х1 1 0 ... 0 ... 0 h1, r+1 … h1,п f1,
х2 0 1 ... 0 ... 0 h2, r+1 ... h2,n f2,
……………………………………………
хi 0 0 ... 1 ... 0 hi, r+1 ... hi,n fi,
хr 0 0 ... 0 ... 1 hr, r+1 ... hr,n fi,
где r — ранг системы ограничений; hi, r+1 — коэффициент симплексной таблицы i-й строки, (r + 1)-го столбца; fi — свободный член i-й строки.
Пусть fi и хотя бы одно hij (j = r + 1,n ; i= 1, r) — дробные числа.
Обозначим через [fi ] и [hij] целые части чисел fi и hij .
Определение 14. Целой частью числа fi называют наибольшее целое число, не превосходящее числа fi .
Дробную часть чисел fi и hij обозначим {fi} и {hij}, она определяется следующим образом:
{fi}= fi -[fi ], {hij}= hij - [hij].
Пример 34.
Если fi и хотя бы одно значение hij дробны, то с учетом введенных обозначений целых и дробных чисел дополнительное ограничение по целочисленности примет вид
{hi,r+l} xr+1 + {hi,r+2} хr+2 +…+ {hi,п} хп ≥ {fi}.
Примечания. 1) Если fi — дробное число, а все hij — целые числа, то задача линейного программирования не имеет целочисленного решения.
2) Ограничение целочисленности может быть наложено не на все переменные, а лишь на их часть. В этом случае задача является частично целочисленной.
Графический метод решения задач
При наличии в задаче линейного программирования двух переменных, а в системе ограничений — неравенств она может быть решена графическим методом [14].
В
системе координат Х1ОХ2
находят
область допустимых решений, строят
нормальный вектор
и
линию уровня. Перемещая линию уровня
по направлению
для
задач на максимум, находим наиболее
удаленную от начала координат точку и
ее координаты. В том случае, когда
координаты этой точки нецелочисленные,
в области допустимых решений строят
целочисленную решетку и находят на ней
такие целые числа, которые удовлетворяют
системе ограничений и при которых
значение целевой функции наиболее
близко к экстремальному нецелочисленному
решению. Координаты такой вершины и
являются целочисленным решением.
Аналогично решается задача на минимум.
