- •Математика в экономике Учебное пособие
- •Оглавление
- •Предисловие
- •Программа дисциплины Цели и задачи освоения учебной дисциплины
- •Содержание дисциплины
- •I. Линейное программирование
- •1.1. Общая задача линейного программирования Задачи математического и линейного программирования
- •Математические модели простейших экономических задач Задача использования ресурсов
- •Задача о составлении рациона питания
- •Каноническая форма задачи линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Задачи для самостоятельного решения
- •1.2. Графический метод решения задач линейного программирования Задача с двумя переменными
- •Графический метод решения задач линейного программирования с п переменными
- •Задачи для самостоятельного решения
- •1.3. Основные положения о решении злп
- •Теоремы о взаимосвязи опорных решений и угловых точек области допустимых решений
- •1.4. Симплексный метод решения задач линейного программирования Симплекс-метод
- •Симплексные таблицы
- •Задачи для самостоятельного решения
- •1.5. Теория двойственности Виды математических моделей двойственных задач
- •Общие правила составления двойственных задач
- •Первая теорема двойственности
- •Вторая теорема двойственности
- •Задачи для самостоятельного решения
- •1.6. Транспортная задача линейного программирования
- •Формулировка транспортной задачи
- •Математическая модель транспортной задачи
- •Опорное решение транспортной задачи
- •Необходимое и достаточное условия разрешимости транспортной задачи
- •Метод вычеркивания
- •Методы построения начального опорного решения Метод северо-западного угла
- •Метод минимальной стоимости
- •Переход от одного опорного решения к другому
- •Распределительный метод
- •Метод потенциалов
- •Особенности решения транспортных задач с неправильным балансом
- •Алгоритм решения транспортной задачи методом потенциалов
- •Транспортная задача по критерию времени
- •Задачи для самостоятельного решения
- •Глава II. Теория игр
- •2.1. Математические модели конфликтных ситуаций
- •2.2. Чистые и смешанные стратегии Основная теорема теории игр
- •Основная теорема теории игр
- •Геометрическая интерпретация игры 2x2, игры 2xп.
- •Общие методы решения конечных игр. Сведение их к задачам линейного программирования
- •Игры с «природой».
- •Задачи для самостоятельного решения
- •Глава III. Теория массового обслуживания
- •3.1. Марковский случайный процесс
- •Понятие о марковском процессе
- •Потоки событий. Простейший поток.
- •Граф состоянии. Размеченный граф состояний
- •Уравнения Колмогорова для вероятностей состояния
- •Финальные вероятности состояний
- •3.2. Системы массового обслуживания
- •Смо с отказами
- •Смо с неограниченным ожиданием
- •Формулы для установившегося режима
- •Смо с ожиданием и с ограниченной длиной очереди
- •Формулы для установившегося режима
- •Задачи для самостоятельного решения
- •Глава IV. Целочисленное программирование
- •4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
- •Графический метод решения задач
- •Прогнозирование эффективного использования производственных площадей
- •Метод Гомори
- •Задачи для самостоятельного решения
- •Глава V. Нелинейное программирование
- •5.1. Задачи нелинейного программирования
- •Общая постановка задачи нелинейного программирования
- •Графический метод решения задач нелинейного программирования с двумя переменными
- •Задача с нелинейной целевой функцией и нелинейной системой ограничений
- •5.2. Метод множителей Лагранжа. Постановка задачи
- •Расчет экономико-математической модели при нелинейных реализациях продукции.
- •5.3. Дробно-линейное программирование Математическая модель задачи
- •Алгоритм решения.
- •Сведение экономико-математической модели дробно-линейного программирования к задаче линейного программирования
- •Задачи для самостоятельного решения
- •Глава VI. Динамическое программирование
- •6.1. Постановка задачи динамического программирования
- •Некоторые экономические задачи, решаемые методами динамического программирования Оптимальная стратегия замены оборудования
- •Оптимальное распределение ресурсов
- •Распределение инвестиций для эффективного использования потенциала предприятия
- •Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
- •Задачи для самостоятельного решения
- •Глава VII. Сетевые модели
- •7.1. Основные понятия сетевой модели Основные понятия
- •Расчет временных параметров сетевого графика
- •Построение сетевого графика и распределение ресурсов
- •Учет стоимостных факторов при реализации сетевого графика
- •Обоснование привлекательности проекта по выпуску продукции
- •Минимизация сети
- •Алгоритм решения
- •Нахождение кратчайшего пути
- •Задача замены автомобильного парка
- •Задачи для самостоятельного решения
- •Тест для самоконтроля
- •Список используемой литературы
- •Список рекомендуемой литературы Основная литература:
- •Дополнительная литература:
- •Ключ к тесту для самоконтроля
Смо с отказами
Заявка, поступившая в систему с отказами и нашедшая все каналы занятыми, получает отказ и покидает систему необслуженной. Показателем качества обслуживания выступает вероятность получения отказа. Предполагается, что все каналы доступны в равной степени всем заявкам, входящий поток является простейшим, длительность (время) обслуживания одной заявки (tобс) распределена по показательному закону [20].
Формулы для расчета установившегося режима
1. Вероятность простоя каналов обслуживания, когда нет заявок (к=0):
(27)
2. Вероятность отказа в обслуживании, когда поступившая на обслуживание заявка найдет все каналы занятыми (к = п): Ротк=Рп=Р0 рп/п!
3. Вероятность обслуживания: Робс=1- Ротк.
4. Среднее число
занятых обслуживанием каналов:
.
5. Доля каналов,
занятых обслуживанием: к3=
/п.
6. Абсолютная пропускная способность СМО: А=λРобс.
Смо с неограниченным ожиданием
Заявка, поступившая в систему с неограниченным ожиданием и нашедшая все каналы занятыми, становится в очередь, ожидая освобождения одного из каналов.
Основной характеристикой качества обслуживания является время ожидания (время пребывания заявки в очереди).
Для таких систем характерно отсутствие отказа в обслуживании, т.е. Ротк = 0 и Робс = 1.
Для систем с ожиданием существует дисциплина очереди:
обслуживание в порядке очереди по принципу "первым пришел — первым обслужен";
случайное неорганизованное обслуживание по принципу "последний пришел — первым обслужен";
обслуживание с приоритетами по принципу "генералы и полковники вне очереди".
Формулы для установившегося режима
1. Вероятность простоя каналов, когда нет заявок (к = 0):
(28)
Предполагается, что р/п < 1.
2. Вероятность занятости обслуживанием к заявок:
Рк = ρкРо/к!, 1≤k≤n. (29)
3. Вероятность занятости обслуживанием всех каналов:
Рп = ρпР0 /п! (30)
4. Вероятность того, что заявка окажется в очереди:
.
(31)
5. Среднее число заявок в очереди:
(32)
6. Среднее время
ожидания заявки в очереди:
оч=
/λ.
(33)
7. Среднее время пребывания заявки в СМО: смо= оч+ обс. (34)
8. Среднее число
занятых обслуживанием каналов:
.
(35)
9. Среднее число
свободных каналов:
.
(36)
10. Коэффициент занятости каналов обслуживания: к3= /п. (37)
11. Среднее число
заявок в СМО:
.
(38)
Смо с ожиданием и с ограниченной длиной очереди
Заявка, поступившая в систему с ожиданием с ограниченной длиной очереди и нашедшая все каналы и ограниченную очередь занятыми, покидает систему необслуженной.
Основной характеристикой качества системы является отказ заявке в обслуживании.
Ограничения на длину очереди могут быть из-за:
ограничения сверху времени пребывания заявки в очереди;
ограничения сверху длины очереди;
3) ограничения общего времени пребывания заявки в системе.
