- •Математика в экономике Учебное пособие
- •Оглавление
- •Предисловие
- •Программа дисциплины Цели и задачи освоения учебной дисциплины
- •Содержание дисциплины
- •I. Линейное программирование
- •1.1. Общая задача линейного программирования Задачи математического и линейного программирования
- •Математические модели простейших экономических задач Задача использования ресурсов
- •Задача о составлении рациона питания
- •Каноническая форма задачи линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Задачи для самостоятельного решения
- •1.2. Графический метод решения задач линейного программирования Задача с двумя переменными
- •Графический метод решения задач линейного программирования с п переменными
- •Задачи для самостоятельного решения
- •1.3. Основные положения о решении злп
- •Теоремы о взаимосвязи опорных решений и угловых точек области допустимых решений
- •1.4. Симплексный метод решения задач линейного программирования Симплекс-метод
- •Симплексные таблицы
- •Задачи для самостоятельного решения
- •1.5. Теория двойственности Виды математических моделей двойственных задач
- •Общие правила составления двойственных задач
- •Первая теорема двойственности
- •Вторая теорема двойственности
- •Задачи для самостоятельного решения
- •1.6. Транспортная задача линейного программирования
- •Формулировка транспортной задачи
- •Математическая модель транспортной задачи
- •Опорное решение транспортной задачи
- •Необходимое и достаточное условия разрешимости транспортной задачи
- •Метод вычеркивания
- •Методы построения начального опорного решения Метод северо-западного угла
- •Метод минимальной стоимости
- •Переход от одного опорного решения к другому
- •Распределительный метод
- •Метод потенциалов
- •Особенности решения транспортных задач с неправильным балансом
- •Алгоритм решения транспортной задачи методом потенциалов
- •Транспортная задача по критерию времени
- •Задачи для самостоятельного решения
- •Глава II. Теория игр
- •2.1. Математические модели конфликтных ситуаций
- •2.2. Чистые и смешанные стратегии Основная теорема теории игр
- •Основная теорема теории игр
- •Геометрическая интерпретация игры 2x2, игры 2xп.
- •Общие методы решения конечных игр. Сведение их к задачам линейного программирования
- •Игры с «природой».
- •Задачи для самостоятельного решения
- •Глава III. Теория массового обслуживания
- •3.1. Марковский случайный процесс
- •Понятие о марковском процессе
- •Потоки событий. Простейший поток.
- •Граф состоянии. Размеченный граф состояний
- •Уравнения Колмогорова для вероятностей состояния
- •Финальные вероятности состояний
- •3.2. Системы массового обслуживания
- •Смо с отказами
- •Смо с неограниченным ожиданием
- •Формулы для установившегося режима
- •Смо с ожиданием и с ограниченной длиной очереди
- •Формулы для установившегося режима
- •Задачи для самостоятельного решения
- •Глава IV. Целочисленное программирование
- •4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
- •Графический метод решения задач
- •Прогнозирование эффективного использования производственных площадей
- •Метод Гомори
- •Задачи для самостоятельного решения
- •Глава V. Нелинейное программирование
- •5.1. Задачи нелинейного программирования
- •Общая постановка задачи нелинейного программирования
- •Графический метод решения задач нелинейного программирования с двумя переменными
- •Задача с нелинейной целевой функцией и нелинейной системой ограничений
- •5.2. Метод множителей Лагранжа. Постановка задачи
- •Расчет экономико-математической модели при нелинейных реализациях продукции.
- •5.3. Дробно-линейное программирование Математическая модель задачи
- •Алгоритм решения.
- •Сведение экономико-математической модели дробно-линейного программирования к задаче линейного программирования
- •Задачи для самостоятельного решения
- •Глава VI. Динамическое программирование
- •6.1. Постановка задачи динамического программирования
- •Некоторые экономические задачи, решаемые методами динамического программирования Оптимальная стратегия замены оборудования
- •Оптимальное распределение ресурсов
- •Распределение инвестиций для эффективного использования потенциала предприятия
- •Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
- •Задачи для самостоятельного решения
- •Глава VII. Сетевые модели
- •7.1. Основные понятия сетевой модели Основные понятия
- •Расчет временных параметров сетевого графика
- •Построение сетевого графика и распределение ресурсов
- •Учет стоимостных факторов при реализации сетевого графика
- •Обоснование привлекательности проекта по выпуску продукции
- •Минимизация сети
- •Алгоритм решения
- •Нахождение кратчайшего пути
- •Задача замены автомобильного парка
- •Задачи для самостоятельного решения
- •Тест для самоконтроля
- •Список используемой литературы
- •Список рекомендуемой литературы Основная литература:
- •Дополнительная литература:
- •Ключ к тесту для самоконтроля
Переход от одного опорного решения к другому
В транспортной задаче переход от одного опорного решения к другому осуществляется с помощью цикла. Для некоторой свободной клетки таблицы строится цикл, содержащий часть клеток, занятых опорным решением. По этому циклу перераспределяются объемы перевозок. Перевозка загружается в выбранную свободную клетку, и освобождается одна из занятых клеток, получается новое опорное решение.
Теорема 10 (о существовании и единственности цикла). Если таблица транспортной задачи содержит опорное решение, то для любой свободной клетки таблицы существует единственный цикл, содержащий эту клетку и часть клеток, занятых опорным решением.
Доказательство. Опорное решение занимает N=т+п—1 клеток таблицы, которым соответствуют линейно независимые векторы-условия. Согласно теореме (о взаимосвязи линейной зависимости векторов-условий и возможности образования цикла) ни одна часть занятых клеток не образует цикл. Если же к занятым клеткам присоединить одну свободную, то соответствующие им т + п векторов линейно зависимы, и по той же теореме существует цикл, содержащий эту клетку. Предположим, что таких циклов два ( i1, j1 ), ( i1, j2 ), …, ( iк, j1 ) и (i1, j1 ), ( i2, j1 ), …, ( i1, jl ). Тогда, объединив клетки обоих циклов без свободной клетки (i1 , j1), получим последовательность клеток (i1,j2), …, (iк,j1), (i2,j1), …, ( i1, jl ), которые образуют цикл. Это противоречит линейной независимости векторов-условий, образующих базис опорного решения. Следовательно, такой цикл единственный.
Означенный цикл
Цикл называется означенным, если его угловые клетки пронумерованы по порядку и нечетным клеткам приписан знак «+», а четным — знак «-» (рисунок 10).
Рисунок 10
Сдвигом по циклу на величину θ называется увеличение объемов перевозок во всех нечетных клетках цикла, отмеченных знаком «+», на θ и уменьшение объемов перевозок во всех четных клетках, отмеченных знаком «—», на θ.
Теорема 11.
Если таблица транспортной задачи
содержит опорное решение, то при сдвиге
по любому циклу, содержащему одну
свободную клетку, на величину θ =
получится опорное решение.
Доказательство. В таблице транспортной задачи, содержащей опорное решение, выберем свободную клетку и отметим ее знаком «+». По теореме (о существовании и единственности цикла) для этой клетки существует единственный цикл, который содержит часть клеток, занятых опорным решением. Пронумеруем клетки цикла, начиная с клетки, отмеченной знаком «+». Найдем θ = и осуществим сдвиг по циклу на эту величину.
В каждой строке и в каждом столбце таблицы, входящих в цикл, две и только две клетки, одна из которых отмечена знаком «+», а другая ― знаком «-». Поэтому в одной клетке объем перевозки увеличивается на θ, а в другой уменьшается на θ, при этом сумма всех перевозок в строке (или столбце) таблицы остается неизменной. Следовательно, после сдвига по циклу по-прежнему и запасы всех поставщиков вывозятся полностью, и запросы всех потребителей удовлетворяются полностью. Так как сдвиг по циклу осуществляется на величину θ = , то все объемы перевозок будут неотрицательными. Следовательно, новое решение является допустимым.
Если оставить свободной одну из клеток с нулевым объемом перевозки, соответствующих , то число занятых клеток будет равно N = т + п - 1. Одна клетка загружается (отмеченная знаком «+»), одна ― освобождается. Так как цикл единственный, то удаление из него одной клетки разрывает его. Цикл из оставшихся занятых клеток образовать нельзя, соответствующие векторы-условия линейно независимы, а решение является опорным.
