- •Математика в экономике Учебное пособие
- •Оглавление
- •Предисловие
- •Программа дисциплины Цели и задачи освоения учебной дисциплины
- •Содержание дисциплины
- •I. Линейное программирование
- •1.1. Общая задача линейного программирования Задачи математического и линейного программирования
- •Математические модели простейших экономических задач Задача использования ресурсов
- •Задача о составлении рациона питания
- •Каноническая форма задачи линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Задачи для самостоятельного решения
- •1.2. Графический метод решения задач линейного программирования Задача с двумя переменными
- •Графический метод решения задач линейного программирования с п переменными
- •Задачи для самостоятельного решения
- •1.3. Основные положения о решении злп
- •Теоремы о взаимосвязи опорных решений и угловых точек области допустимых решений
- •1.4. Симплексный метод решения задач линейного программирования Симплекс-метод
- •Симплексные таблицы
- •Задачи для самостоятельного решения
- •1.5. Теория двойственности Виды математических моделей двойственных задач
- •Общие правила составления двойственных задач
- •Первая теорема двойственности
- •Вторая теорема двойственности
- •Задачи для самостоятельного решения
- •1.6. Транспортная задача линейного программирования
- •Формулировка транспортной задачи
- •Математическая модель транспортной задачи
- •Опорное решение транспортной задачи
- •Необходимое и достаточное условия разрешимости транспортной задачи
- •Метод вычеркивания
- •Методы построения начального опорного решения Метод северо-западного угла
- •Метод минимальной стоимости
- •Переход от одного опорного решения к другому
- •Распределительный метод
- •Метод потенциалов
- •Особенности решения транспортных задач с неправильным балансом
- •Алгоритм решения транспортной задачи методом потенциалов
- •Транспортная задача по критерию времени
- •Задачи для самостоятельного решения
- •Глава II. Теория игр
- •2.1. Математические модели конфликтных ситуаций
- •2.2. Чистые и смешанные стратегии Основная теорема теории игр
- •Основная теорема теории игр
- •Геометрическая интерпретация игры 2x2, игры 2xп.
- •Общие методы решения конечных игр. Сведение их к задачам линейного программирования
- •Игры с «природой».
- •Задачи для самостоятельного решения
- •Глава III. Теория массового обслуживания
- •3.1. Марковский случайный процесс
- •Понятие о марковском процессе
- •Потоки событий. Простейший поток.
- •Граф состоянии. Размеченный граф состояний
- •Уравнения Колмогорова для вероятностей состояния
- •Финальные вероятности состояний
- •3.2. Системы массового обслуживания
- •Смо с отказами
- •Смо с неограниченным ожиданием
- •Формулы для установившегося режима
- •Смо с ожиданием и с ограниченной длиной очереди
- •Формулы для установившегося режима
- •Задачи для самостоятельного решения
- •Глава IV. Целочисленное программирование
- •4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
- •Графический метод решения задач
- •Прогнозирование эффективного использования производственных площадей
- •Метод Гомори
- •Задачи для самостоятельного решения
- •Глава V. Нелинейное программирование
- •5.1. Задачи нелинейного программирования
- •Общая постановка задачи нелинейного программирования
- •Графический метод решения задач нелинейного программирования с двумя переменными
- •Задача с нелинейной целевой функцией и нелинейной системой ограничений
- •5.2. Метод множителей Лагранжа. Постановка задачи
- •Расчет экономико-математической модели при нелинейных реализациях продукции.
- •5.3. Дробно-линейное программирование Математическая модель задачи
- •Алгоритм решения.
- •Сведение экономико-математической модели дробно-линейного программирования к задаче линейного программирования
- •Задачи для самостоятельного решения
- •Глава VI. Динамическое программирование
- •6.1. Постановка задачи динамического программирования
- •Некоторые экономические задачи, решаемые методами динамического программирования Оптимальная стратегия замены оборудования
- •Оптимальное распределение ресурсов
- •Распределение инвестиций для эффективного использования потенциала предприятия
- •Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
- •Задачи для самостоятельного решения
- •Глава VII. Сетевые модели
- •7.1. Основные понятия сетевой модели Основные понятия
- •Расчет временных параметров сетевого графика
- •Построение сетевого графика и распределение ресурсов
- •Учет стоимостных факторов при реализации сетевого графика
- •Обоснование привлекательности проекта по выпуску продукции
- •Минимизация сети
- •Алгоритм решения
- •Нахождение кратчайшего пути
- •Задача замены автомобильного парка
- •Задачи для самостоятельного решения
- •Тест для самоконтроля
- •Список используемой литературы
- •Список рекомендуемой литературы Основная литература:
- •Дополнительная литература:
- •Ключ к тесту для самоконтроля
Методы построения начального опорного решения Метод северо-западного угла
Существует ряд методов построения начального опорного решения, наиболее простым из которых является метод северо-западного угла. В данном методе запасы очередного поставщика используются для обеспечения запросов очередных потребителей до тех пор, пока не будут исчерпаны полностью, после чего используются запасы следующего по номеру поставщика.
Заполнение таблицы транспортной задачи начинается с левого верхнего угла и состоит из ряда однотипных шагов. На каждом шаге, исходя из запасов очередного поставщика и запросов очередного потребителя, заполняется только одна клетка и соответственно исключается из рассмотрения один поставщик или потребитель. Осуществляется это таким образом:
если аi < bj , то хij = ai и исключается поставщик с номером i, xik = 0, k =1, 2, ... , п, k≠ j, bj' = bj - аi ;
если ai > bj, то xij= bj и исключается потребитель с номером j, xkj = 0, k=1, 2, ... , т, к≠ i, а'i = аi - bj ;
3) если ai = bj, то xij= ai =bj и исключается либо i -й поставщик, xik = 0, k = 1, 2, ..., п, k≠ j , bj'=0, либо j -й потребитель, хкj = 0, k=1, 2, ... , т, к≠ i, аi’ =0.
Нулевые перевозки принято заносить в таблицу только тогда, когда они попадают в клетку (i, j), подлежащую заполнению. Если в очередную клетку таблицы (i, j) требуется поставить перевозку, а i-й поставщик или j-й потребитель имеет нулевые запасы или запросы, то в клетку ставится перевозка, равная нулю (базисный нуль), и после этого, как обычно, исключается из рассмотрения соответствующий поставщик или потребитель. Таким образом, в таблицу заносят только базисные нули, остальные клетки с нулевыми перевозками остаются пустыми.
Во избежание ошибок после построения начального опорного решения необходимо проверить, что число занятых клеток равно т+ п 1 и векторы-условия, соответствующие этим клеткам, линейно независимы.
Теорема 8. Решение транспортной задачи, построенное методом северо-западного угла, является опорным.
Доказательство. Число занятых опорным решением клеток таблицы должно быть равно N = т + п 1. На каждом шаге построения решения по методу северо-западного угла заполняется одна клетка и исключается из рассмотрения одна строка (поставщик) или один столбец (потребитель) таблицы задачи. Через т + п 2 шага в таблице будет занято т + п 2 клетки. В то же время останутся невычеркнутыми одна строка и один столбец, при этом незанятая клетка одна. При заполнении этой последней клетки число занятых клеток составит т + п — 2 + 1 = т + п — 1.
Проверим, что векторы, соответствующие занятым опорным решением клеткам, линейно независимы. Применим метод вычеркивания. Все занятые клетки можно вычеркнуть, если проделать это в порядке их заполнения.
Необходимо иметь в виду, что метод северо-западного угла не учитывает стоимость перевозок, поэтому опорное решение, построенное данным методом, может быть далеко от оптимального.
Пример 13. Составить начальное опорное решение, используя метод северо-западного угла, для транспортной задачи, исходные данные которой представлены в таблице:
b ai |
150 |
200 |
100 |
100 |
100 |
1 |
3 |
4 |
2 |
250 |
4 |
5 |
8 |
3 |
200 |
2 |
3 |
6 |
7 |
Решение. Распределяем запасы 1-го поставщика. Так как его запасы а1=100 меньше запросов 1-го потребителя b1=150, то в клетку (1, 1) записываем перевозку х11=100 и исключаем из рассмотрения поставщика. Определяем оставшиеся неудовлетворенными запросы 1-го потребителя b1'=b1—а1=150-100=50.
Распределяем запасы 2-го поставщика. Так как его запасы а2=250 больше оставшихся неудовлетворенными запросов 1-го потребителя b1'= =50, то в клетку (2, 1) записываем перевозку х21 = 50 и исключаем из рассмотрения 1-го потребителя. Определяем оставшиеся запасы 2-го поставщика а'2=а2— b1'=250— 50 = 200. Так как а'2 = b2= 200, то в клетку (2, 2) записываем х22 = 200 и исключаем по своему усмотрению либо 2-го поставщика, либо 2-го потребителя. Пусть исключили 2-го поставщика. Вычисляем оставшиеся неудовлетворенными запросы 2-го потребителя
b'2 = b2— а'2 = 200 — 200 = 0.
Распределяем запасы 3-го поставщика. Так как а3 > b'2 (200 > 0), то в клетку (3, 2) записываем х32 = 0 и исключаем 2-го потребителя. Запасы 3-го поставщика не изменились а'3 = а3 — b'2 = 200 — 0 = 200. Сравниваем а'3 и b3 (200> 100), в клетку (3, 3) записываем х33 = 100, исключаем 3-го потребителя и вычисляем а''3 = а'3— b3= 200 100 = 100. Так как а''3 = b4, то в клетку (3, 4) записываем х34 = 100. Ввиду того, что задача с правильным балансом, запасы всех поставщиков исчерпаны и запросы всех потребителей удовлетворены полностью и одновременно.
Результаты построения опорного решения приведены в таблице:
b j ai |
150 |
200 |
100 |
100 |
100 |
1 100 |
3 |
4 |
2 |
250 |
4 50 |
5 200 |
8 |
3 |
200 |
2
|
3 0 |
6 100 |
7 100 |
Проверяем правильность построения опорного решения. Число занятых клеток должно быть равно N= т + п — 1 = 3 + 4— 1=6. В таблице занято шесть клеток. Применяя метод вычеркивания, убеждаемся, что найденное решение является «вычеркиваемым»:
(звездочкой отмечен базисный нуль).
Следовательно, векторы-условия, соответствующие занятым клеткам, линейно независимы и построенное решение является опорным.

j