- •Математика в экономике Учебное пособие
- •Оглавление
- •Предисловие
- •Программа дисциплины Цели и задачи освоения учебной дисциплины
- •Содержание дисциплины
- •I. Линейное программирование
- •1.1. Общая задача линейного программирования Задачи математического и линейного программирования
- •Математические модели простейших экономических задач Задача использования ресурсов
- •Задача о составлении рациона питания
- •Каноническая форма задачи линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Задачи для самостоятельного решения
- •1.2. Графический метод решения задач линейного программирования Задача с двумя переменными
- •Графический метод решения задач линейного программирования с п переменными
- •Задачи для самостоятельного решения
- •1.3. Основные положения о решении злп
- •Теоремы о взаимосвязи опорных решений и угловых точек области допустимых решений
- •1.4. Симплексный метод решения задач линейного программирования Симплекс-метод
- •Симплексные таблицы
- •Задачи для самостоятельного решения
- •1.5. Теория двойственности Виды математических моделей двойственных задач
- •Общие правила составления двойственных задач
- •Первая теорема двойственности
- •Вторая теорема двойственности
- •Задачи для самостоятельного решения
- •1.6. Транспортная задача линейного программирования
- •Формулировка транспортной задачи
- •Математическая модель транспортной задачи
- •Опорное решение транспортной задачи
- •Необходимое и достаточное условия разрешимости транспортной задачи
- •Метод вычеркивания
- •Методы построения начального опорного решения Метод северо-западного угла
- •Метод минимальной стоимости
- •Переход от одного опорного решения к другому
- •Распределительный метод
- •Метод потенциалов
- •Особенности решения транспортных задач с неправильным балансом
- •Алгоритм решения транспортной задачи методом потенциалов
- •Транспортная задача по критерию времени
- •Задачи для самостоятельного решения
- •Глава II. Теория игр
- •2.1. Математические модели конфликтных ситуаций
- •2.2. Чистые и смешанные стратегии Основная теорема теории игр
- •Основная теорема теории игр
- •Геометрическая интерпретация игры 2x2, игры 2xп.
- •Общие методы решения конечных игр. Сведение их к задачам линейного программирования
- •Игры с «природой».
- •Задачи для самостоятельного решения
- •Глава III. Теория массового обслуживания
- •3.1. Марковский случайный процесс
- •Понятие о марковском процессе
- •Потоки событий. Простейший поток.
- •Граф состоянии. Размеченный граф состояний
- •Уравнения Колмогорова для вероятностей состояния
- •Финальные вероятности состояний
- •3.2. Системы массового обслуживания
- •Смо с отказами
- •Смо с неограниченным ожиданием
- •Формулы для установившегося режима
- •Смо с ожиданием и с ограниченной длиной очереди
- •Формулы для установившегося режима
- •Задачи для самостоятельного решения
- •Глава IV. Целочисленное программирование
- •4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
- •Графический метод решения задач
- •Прогнозирование эффективного использования производственных площадей
- •Метод Гомори
- •Задачи для самостоятельного решения
- •Глава V. Нелинейное программирование
- •5.1. Задачи нелинейного программирования
- •Общая постановка задачи нелинейного программирования
- •Графический метод решения задач нелинейного программирования с двумя переменными
- •Задача с нелинейной целевой функцией и нелинейной системой ограничений
- •5.2. Метод множителей Лагранжа. Постановка задачи
- •Расчет экономико-математической модели при нелинейных реализациях продукции.
- •5.3. Дробно-линейное программирование Математическая модель задачи
- •Алгоритм решения.
- •Сведение экономико-математической модели дробно-линейного программирования к задаче линейного программирования
- •Задачи для самостоятельного решения
- •Глава VI. Динамическое программирование
- •6.1. Постановка задачи динамического программирования
- •Некоторые экономические задачи, решаемые методами динамического программирования Оптимальная стратегия замены оборудования
- •Оптимальное распределение ресурсов
- •Распределение инвестиций для эффективного использования потенциала предприятия
- •Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
- •Задачи для самостоятельного решения
- •Глава VII. Сетевые модели
- •7.1. Основные понятия сетевой модели Основные понятия
- •Расчет временных параметров сетевого графика
- •Построение сетевого графика и распределение ресурсов
- •Учет стоимостных факторов при реализации сетевого графика
- •Обоснование привлекательности проекта по выпуску продукции
- •Минимизация сети
- •Алгоритм решения
- •Нахождение кратчайшего пути
- •Задача замены автомобильного парка
- •Задачи для самостоятельного решения
- •Тест для самоконтроля
- •Список используемой литературы
- •Список рекомендуемой литературы Основная литература:
- •Дополнительная литература:
- •Ключ к тесту для самоконтроля
Опорное решение транспортной задачи
Прежде чем перейти к понятию опорного решения остановимся на основных теоремах транспортной задачи.
Необходимое и достаточное условия разрешимости транспортной задачи
Для того чтобы транспортная задача линейного программирования имела решение, необходимо и достаточно, чтобы суммарные запасы поставщиков равнялись суммарным запросам потребителей:
= .
Свойство системы ограничений транспортной задачи: ранг системы векторов ― условий транспортной задачи равен N=т + п — 1.
Опорным решением транспортной задачи называется любое допустимое решение, для которого векторы-условия, соответствующие положительным координатам, линейно независимы.
Ввиду того, что ранг системы векторов ― условий транспортной задачи равен т+п—1, опорное решение не может иметь отличных от нуля координат более т+п—1. Число отличных от нуля координат невырожденного опорного решения равно т+п—1, а для вырожденного опорного решения меньше т+п—1.
Любое допустимое решение транспортной задачи можно записать в ту же таблицу, что и исходные данные. Клетки таблицы транспортной задачи, в которых находятся отличные от нуля или базисные нулевые перевозки, называются занятыми, остальные — незанятыми или свободными. Клетки таблицы нумеруются так, что клетка, содержащая перевозку хij, т.е. стоящая в i-й строке и j-м столбце, имеет номер ( i, j ). Каждой клетке с номером ( i, j ) соответствует переменная хij , которой соответствует вектор-условие Аij.
Для того чтобы избежать трудоемких вычислений при проверке линейной независимости векторов-условий, соответствующих положительным координатам допустимого решения, вводят понятие цикла. Циклы также используются для перехода от одного опорного решения к другому.
Циклом называется такая последовательность клеток таблицы транспортной задачи ( i1, j1 ), ( i1, j2 ), ( i2, j2 ), …, ( iк, j1 ), в которой две и только две соседние клетки расположены в одной строке или столбце, причем первая и последняя клетки также находятся в одной строке или столбце.
Цикл изображают в таблице транспортной задачи в виде замкнутой ломаной линии. В любой клетке цикла происходит поворот звена ломаной линии на 90°. Простейшие циклы изображены на рисунок 9, где звездочкой отмечены клетки таблицы, включенные в состав цикла.
Р
исунок
9
Теорема 7 (о взаимосвязи линейной зависимости векторов ― условий и возможности образования цикла). Для того чтобы система векторов ― условий транспортной задачи была линейно зависимой, необходимо и достаточно, чтобы из соответствующих клеток таблицы можно выделить часть, которая образует цикл.
Следствие 1. Допустимое решение транспортной задачи Х=( хij), i= 1, 2, ..., m, j= 1, 2, ..., n является опорным тогда и только тогда, когда из занятых им клеток таблицы нельзя образовать ни одного цикла.
Метод вычеркивания
Метод вычеркивания позволяет проверить, является ли данное решение транспортной задачи опорным.
Пусть допустимое решение транспортной задачи, которое имеет т+п—1 отличную от нуля координату, записано в таблицу. Чтобы данное решение было опорным, векторы ― условия, соответствующие положительным координатам, должны быть линейно независимыми. Для этого занятые решением клетки таблицы должны быть расположены так, чтобы из них нельзя было образовать цикл.
Строка или столбец таблицы с одной занятой клеткой не может входить в какой-либо цикл, так как цикл имеет две и только две клетки в каждой строке или в столбце. Следовательно, можно вычеркнуть сначала либо все строки таблицы, содержащие по одной занятой клетке, либо все столбцы, содержащие по одной занятой клетке, далее вернуться к столбцам (строкам) и продолжить их вычеркивание. Если в результате вычеркиваний все строки и столбцы будут вычеркнуты, значит, из занятых клеток таблицы нельзя выделить часть, образующую цикл, и система соответствующих векторов-условий линейно независима, а решение является опорным. Если же после вычеркиваний останется часть клеток, то эти клетки образуют цикл, система соответствующих векторов-условий линейно зависима, а решение не является опорным.
Ниже приведены примеры «вычеркиваемого» (опорного) и «невычеркиваемого» (неопорного) решений:
«вычеркиваемое» «невычеркиваемое»
