- •Математика в экономике Учебное пособие
- •Оглавление
- •Предисловие
- •Программа дисциплины Цели и задачи освоения учебной дисциплины
- •Содержание дисциплины
- •I. Линейное программирование
- •1.1. Общая задача линейного программирования Задачи математического и линейного программирования
- •Математические модели простейших экономических задач Задача использования ресурсов
- •Задача о составлении рациона питания
- •Каноническая форма задачи линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Задачи для самостоятельного решения
- •1.2. Графический метод решения задач линейного программирования Задача с двумя переменными
- •Графический метод решения задач линейного программирования с п переменными
- •Задачи для самостоятельного решения
- •1.3. Основные положения о решении злп
- •Теоремы о взаимосвязи опорных решений и угловых точек области допустимых решений
- •1.4. Симплексный метод решения задач линейного программирования Симплекс-метод
- •Симплексные таблицы
- •Задачи для самостоятельного решения
- •1.5. Теория двойственности Виды математических моделей двойственных задач
- •Общие правила составления двойственных задач
- •Первая теорема двойственности
- •Вторая теорема двойственности
- •Задачи для самостоятельного решения
- •1.6. Транспортная задача линейного программирования
- •Формулировка транспортной задачи
- •Математическая модель транспортной задачи
- •Опорное решение транспортной задачи
- •Необходимое и достаточное условия разрешимости транспортной задачи
- •Метод вычеркивания
- •Методы построения начального опорного решения Метод северо-западного угла
- •Метод минимальной стоимости
- •Переход от одного опорного решения к другому
- •Распределительный метод
- •Метод потенциалов
- •Особенности решения транспортных задач с неправильным балансом
- •Алгоритм решения транспортной задачи методом потенциалов
- •Транспортная задача по критерию времени
- •Задачи для самостоятельного решения
- •Глава II. Теория игр
- •2.1. Математические модели конфликтных ситуаций
- •2.2. Чистые и смешанные стратегии Основная теорема теории игр
- •Основная теорема теории игр
- •Геометрическая интерпретация игры 2x2, игры 2xп.
- •Общие методы решения конечных игр. Сведение их к задачам линейного программирования
- •Игры с «природой».
- •Задачи для самостоятельного решения
- •Глава III. Теория массового обслуживания
- •3.1. Марковский случайный процесс
- •Понятие о марковском процессе
- •Потоки событий. Простейший поток.
- •Граф состоянии. Размеченный граф состояний
- •Уравнения Колмогорова для вероятностей состояния
- •Финальные вероятности состояний
- •3.2. Системы массового обслуживания
- •Смо с отказами
- •Смо с неограниченным ожиданием
- •Формулы для установившегося режима
- •Смо с ожиданием и с ограниченной длиной очереди
- •Формулы для установившегося режима
- •Задачи для самостоятельного решения
- •Глава IV. Целочисленное программирование
- •4.1 Общая формулировка задачи целочисленного программирования Общая формулировка задачи
- •Графический метод решения задач
- •Прогнозирование эффективного использования производственных площадей
- •Метод Гомори
- •Задачи для самостоятельного решения
- •Глава V. Нелинейное программирование
- •5.1. Задачи нелинейного программирования
- •Общая постановка задачи нелинейного программирования
- •Графический метод решения задач нелинейного программирования с двумя переменными
- •Задача с нелинейной целевой функцией и нелинейной системой ограничений
- •5.2. Метод множителей Лагранжа. Постановка задачи
- •Расчет экономико-математической модели при нелинейных реализациях продукции.
- •5.3. Дробно-линейное программирование Математическая модель задачи
- •Алгоритм решения.
- •Сведение экономико-математической модели дробно-линейного программирования к задаче линейного программирования
- •Задачи для самостоятельного решения
- •Глава VI. Динамическое программирование
- •6.1. Постановка задачи динамического программирования
- •Некоторые экономические задачи, решаемые методами динамического программирования Оптимальная стратегия замены оборудования
- •Оптимальное распределение ресурсов
- •Распределение инвестиций для эффективного использования потенциала предприятия
- •Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий
- •Задачи для самостоятельного решения
- •Глава VII. Сетевые модели
- •7.1. Основные понятия сетевой модели Основные понятия
- •Расчет временных параметров сетевого графика
- •Построение сетевого графика и распределение ресурсов
- •Учет стоимостных факторов при реализации сетевого графика
- •Обоснование привлекательности проекта по выпуску продукции
- •Минимизация сети
- •Алгоритм решения
- •Нахождение кратчайшего пути
- •Задача замены автомобильного парка
- •Задачи для самостоятельного решения
- •Тест для самоконтроля
- •Список используемой литературы
- •Список рекомендуемой литературы Основная литература:
- •Дополнительная литература:
- •Ключ к тесту для самоконтроля
Задачи для самостоятельного решения
1. Составить и решить табличным симплексным методом задачу, двойственную следующей: максимизировать функцию F =x1+ x2 +x3 при ограничениях
2. Симплексным методом найти максимум функции F =x1+ x2 при ограничениях
Составить двойственную задачу и решить её симплексным методом.
3. Найти максимум функции F =2x1-3 x2 при ограничениях
Решить задачу симплексным методом, затем составить двойственную задачу и решить ее геометрически.
4. Найти минимум функции F =2x1+4 x2 при ограничениях
Решить задачу геометрически, затем составить двойственную задачу и решить ее табличным симплексным методом.
5. Составить двойственную задачу и решить ее симплексным методом. Найти решение исходной задачи, не решая её, применив первую теорему двойственности.
F =x1+2x2→max
6. Составить двойственную задачу и решить исходную геометрическим методом. Найти решение двойственной задачи, не решая её, применив вторую теорему двойственности.
F =x1+2x2→min
Ответы: 1. Z min = 4/3; 2. F max = Z min =9; 3. F max =∞, двойственная задача не имеет решений; 4. F min = Z max =22; 5. F max = Z min==22/3, х*1=2/3, х*2=10/3; 6. F min = =Zmax ==-4, у*1=0, у*2=0, у*3=2/3.
1.6. Транспортная задача линейного программирования
Под названием «транспортная задача» объединяется широкий круг задач с единой математической моделью. Данные задачи относятся к задачам линейного программирования и могут быть решены симплексным методом. Однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его, получить оптимальное решение.
Формулировка транспортной задачи
Однородный груз сосредоточен у т поставщиков в объемах a1, a2,..., ат. Данный груз необходимо доставить п потребителям в объемах b1, b2, ..., bn. Известны сij, i= 1, 2, ..., m, j = 1, 2, ..., п — стоимости перевозки единицы груза от каждого i-го поставщика каждому j-му потребителю. Требуется составить такой план перевозок, при котором запасы всех поставщиков будут вывезены полностью, запросы всех потребителей полностью удовлетворены и суммарные затраты на перевозку всех грузов минимальны.
Исходные данные транспортной задачи обычно записываются в таблице:
ai |
b1 |
b2 |
… |
bn |
a1 |
с11 |
с12 |
… |
с1n |
a2 |
с21 |
с22 |
… |
с2n |
… |
… |
… |
… |
… |
ат |
ст1 |
ст2 |
… |
стn |
Исходные данные задачи могут быть представлены также в виде вектора запасов поставщиков А = (a1, a2, ..., ат), вектора запросов потребителей В = (b1, b2, ..., bn) и матрицы стоимостей
.
В транспортных задачах под поставщиками и потребителями понимаются различные промышленные и сельскохозяйственные предприятия, заводы, фабрики, склады, магазины и т.д. Однородными считаются грузы, которые могут быть перевезены одним видом транспорта. Под стоимостью перевозок понимаются тарифы, расстояния, время, расход топлива и т.п.

bj