- •3.Общая характеристика белков.
- •4. Вторичная структура белковой молекулы.
- •5.Перемидиновые и пуриновые основания.
- •6. Третичная структура днк.
- •7.Пептиды реакция образования пептидов.
- •8. Нуклеиновые кислоты.
- •Каждая из этих видов рнк выполняет свою специфическую роль в процессе биосинтеза белка. Химическое строение рнк и днк.
- •Структура нуклеиновых кислот.
- •9.Простые белки.
- •11.Элементарный состав белков.
- •12. Нуклеотиды и нуклеозиды.
- •13.Формы белковых молекул.
- •14. Общая характеристика ферментов.
- •15. Аминокислотный состав белков.
- •16. Специфические свойства ферментов. (термолабильность, зависимость от pH среды, специфичность действия).
- •17.Структура и свойста белков.
- •18.Номенклатура ферментов.
- •19.Незаменимые аминокислоты.
- •20.Общая характеристика углеводов
- •22.Классификация углеводов
- •24 Простые углеводы-моносахариды
- •25.Первичная структура белковой молекулы.
- •26 Дисахариды,Олигосахариды
- •27.Вторичная структура белковой молекулы.
- •28 Полисахариды
- •29 Третичная структура белковой молекулы.
- •31.Четвертичная структура белковой молекулы
- •36.Простые липиды-жиры
- •37.Функции белков в организме
- •40.Простые липиды-Стероиды
- •41. Сложные липиды.
- •42.Обмен веществ, его роль.
- •44.. Ферменты, общая характеристика
- •46.Строение ферментов
- •47.Нуклеиновые кислоты. Общая характеристика и биологическое значение.
- •49.Применение ферментов.
- •51.Химический состав рнк.
- •52.Полисахарид – хитин, его строение, значение.
- •53. Общая характеристика гормонов.
- •56.Общая характеристика витаминов
- •57.Классификация гормонов.
- •58.Водорастворимые витамины.
- •60.Первичная структура днк.
1.Аминокислоты ,значение. Аминокислоты составляют основу протеинов (белка). Большинство аминокислот необходимо для нормального роста и развития человека. Аминокислоты – это строительные блоки нашего тела. Они содержат азот, который отсутствует в жирных кислотах и сахаре. Протеин (белок) жизненно важен для каждого живого организма. К тому же протеин необходим для множества химических процессов, поддерживающих жизнеспособность. Существует порядка 1600 основных протеинов, которые подходят для человеческого организма, они все состоят из 22 аминокислот. В результате пищеварения протеин рассыпается на 22 аминокислоты, восемь из которых принято считать важнейшими:(лизин,валин,лейцин,изолейцин,фенилаланин,трионин,метионин,трептофан,гистидин-у детей ) и которые не могут вырабатываться самим организмом, оставшиеся аминокислоты не столь важны и могут вырабатываться самим организмом. Нехватка в организме всего одной аминокислоты, ведёт к возникновению серьезных проблем со здоровьем. Дефицит аминокислот может наблюдаться в результате множества факторов, как правило, это результат низко-белковой диеты. Среди иных факторов следует отметить стрессы, травмы, инфекции, возраст, лечение и химический дисбаланс в организме. Очень важно, чтобы содержание аминокислот в организме было сбалансировано, поэтому рекомендуется принимать аминокислотные комплексы, которые восполняют запас недостающих аминокислот.Аминокислоты необходимы для многих функций организма, включая:
1.Строительство клеток и восстановление тканей;
2.Часть энзимной и гормональной систем;3.Распространение кислорода по всему организму;
4.Некоторые аминокислоты превращаются в глюкозу для стабилизации уровня сахара в крови;
5.Поддерживают и восстанавливают мышцы, сухожилия, кожные покровы, связки, органы такие как, сердце и мозг, гланды, ногти и волосы;
6.Необходимы для поддержания кислотно-щелочного баланса;
7.Формируют антитела для противодействия вирусам и бактериям;8.Создают нуклеопротеины RNA и DNA;9.Являются частью мышечной системы;10.Служат для построения соединительных тканей (коллаген);
11.Источники энергии, необходимые для функционирования мозга.
2.Принцип комплементарности нуклеотидов.При исследовании различных ДНК было установлено, что аденин одной цепи может связываться лишь с тимином, а гуанин — только с цитозином другой. Следовательно, порядок расположения нуклеотидов в одной цепи строго соответствует порядку их расположения в другой. Этот феномен получилназвание комплементарности, а противоположные полинуклеотидные цепи называются комплементарными.
Комплемента́рность — взаимное соответствие молекул биополимеров или их фрагментов, обеспечивающее образование связей между пространственно взаимодополняющими фрагментами молекул или их структурных фрагментов вследствие супрамолекулярных взаимодействий.Взаимодействие комплементарных фрагментов или биополимеров не сопровождается образованием ковалентной химической связи между комплементарными фрагментами, однако из-за пространственного взаимного соответствия комплементарных фрагментов приводит к образованию множества относительно слабых связей (водородных и ван-дер-ваальса) с достаточно большой суммарной энергией, что приводит к образованию устойчивых молекулярных комплексов.Вместе с тем следует отметить, что механизм каталитичекой активности ферментов определяется комплементарностью фермента и переходного состояния либо промежуточного продукта катализируемой реакции — и в этом случае может происходить обратимое образование химической связи.Комплементарность нуклеиновых кислот. В случае нуклеиновых кислот — как олиго- так и полинуклеотидов азотистые основания нуклеотидов способны вследствие образования водородных связей формировать парные комплексы аденин тимин (или урацил в РНК) и гуанин—цитозин при взаимодействии цепей нуклеиновых кислот. Такое взаимодействие играет ключевую роль в ряде фундаментальных процессов хранения и передачи генетической информации: репликации ДНК, обеспечивающей передачу генетической информации при делении клетки, транскрипции ДНК в РНК при синтезе белков, кодируемых ДНК гена, хранении генетической информации в двухцепочечной ДНК и процессах репарации ДНК при её повреждении.ДНК.Принцип комплементарности используется в синтезе ДНК. Это строгое соответствие соединения азотистых оснований, соединёнными водородными связями, в котором: А-Т (Аденин соединяется с Тимином) Г-Ц (Гуанин соединяется с Цитозином
3.Общая характеристика белков.
Белки – это высокомолекулярные соединения, построенные из аминокислот. В создание белков участвует 20 аминокислот. Они связываются между собой в длинные цепи, которые образуют основу белковой молекулы большой молекулярной массы.Белки выполняют важные функции в организме: Каталитическая – практически все химические реакции, протекающие в животной клетке, катализируются специфическими веществами, называемыми ферментами. Структурная – белки составляют 1/5 част, или 20% массы тела. Коллаген – структурный белок соединительной ткани. Энергетическая – при полном распаде 1 г белка выделяется 17,15 кДж энергии, что указывает на их способность участвовать в обеспечении организма энергией. Транспортная – определенная группа белков крови обладает способностью взаимодействовать с различными соединениями и переносить их. Защитная – в процессе эволюции выработались механизмы узнавания и связывания «чужих» молекул с помощью специфических белков (антител).Регуляторная – определенные белки являются гормонами, участвуют в регуляции разнообразных процессов, протекающих в организме. Участие белков в процессах наследственности, т.е. хранении и передачи генетической информации. Эта функции выполняется сложными белками – нуклеопротеидами.Сократительная – важным признаком живого является подвижность. В основе ее лежит сократительная функция белков.Гемостатическая функция – белки участвуют в образовании тромба и предотвращении кровотечения.Белки состоят из след.элементов:C-50-55%, O-21,5-23,5%, H-6,5-7,3%, N-15-17,6%, S-0,3-2,5%, P-0,5-0,6%.
4. Вторичная структура белковой молекулы.
Молекулы белков представляют собой линейные полимеры, состоящие из остатков α-L-аминокислот (которые являются мономерами), также в состав белков могут входить модифицированные аминокислотные остатки и компоненты неаминокислотной природы. При образовании белка в результате взаимодействия α-карбоксильной группы (-COOH) одной аминокислоты с α-аминогруппой (-NH2) другой аминокислоты образуются пептидные связи. Концы белка называют N- и C-концом, в зависимости от того, какая из групп концевого аминокислотного остатка свободна: -NH2 или -COOH, соответственно. При синтезе белка на рибосоме первым (N-концевым) аминокислотным остатком обычно является остаток метионина, а последующие остатки присоединяются к C-концу предыдущего.Структура белковой молекулы — сложная пространственная структура, обладающая первичным, вторичным, третичным и четвертичным уровнями организации. Особенности структурной организации белковой молекулы определяются первичным уровнем ее организации. Вторичная структура белковой молекулы — структура белковой молекулы, образующаяся за счет скручивания линейной последовательности аминокислот первичной структуры с образованием спирали, многочисленные витки которой связаны между собой водородными связями. Вторичная структура — конформационное расположение главной цепи макромолекулы (например, полипептидная цепь белка или цепи нуклеиновых кислот), независимо от конформации боковых цепей или отношения к другим сегментам[1]. В описании вторичной структуры важным является определение водородных связей, которые стабилизируют отдельные фрагменты макромолекул.
Втори́чная структу́ра белка́ — пространственная структура, образующаяся в результате взаимодействия между функциональными группами пептидного остова.
