Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_po_fizike2_3_4.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
950.44 Кб
Скачать

22. Поток вектора напряженности электрического поля. Теорема Гаусса.

23. Теорема о циркуляции вектора напряженности. Потенциал

Существуют два равнозначных определения консервативной силы. Оба они подробно обсуждались в механике.

  1. Консервативной называется сила, работа которой не зависит от формы траектории.

  2. Консервативной называется сила, работа которой на замкнутой траектории равна нулю.

Рассмотрим перемещение заряда q в электростатическом поле   по замкнутой траектории (рис. 3.5.). Заряд из точки 1 перемещается по пути L1 в точку 2, а затем возвращается в исходное положение по другому пути L2. В процессе этого движения на заряд со стороны поля действует консервативная электрическая сила:

.

Работа этой силы на замкнутой траектории L = L1 + L2 равна нулю:

.

Это уравнение, упростив, запишем так:

                          .                       (3.18)

Разберём подробно последнее уравнение. Подынтегральное выражение — элементарная работа электрической силы, действующей на единичный положительный заряд, на перемещении   (рис. 3.6.):

                     ,                  (3.19)

здесь q = 1 — единичный заряд.

При подсчёте работы на замкнутой траектории необходимо сложить элементарные работы электрической силы на всех участках траектории. Иными словами, проинтегрировать (3.19) по замкнутому контуру L:

           .             (3.20)

Интеграл по замкнутому контуру   =   называется циркуляцией вектора напряжённости электростатического поля по контуру L. По своей сути циркуляция вектора напряжённости — это работа электростатического поля, совершаемая при перемещении по замкнутому контуру единичного положительного заряда.

Так как речь идёт о работе консервативной силы, то на замкнутой траектории она равна нулю:

.

Теорема о циркуляции в электростатике: циркуляция вектора напряжённости электростатического поля по любому замкнутому контуру равна нулю.

Потенциал

  Потенциал электрического поля представляет собой отношение потенциальной энергии к заряду. Как известно электрическое поле является потенциальным. Следовательно, любое тело находящиеся в этом поле обладает потенциальной энергией. Любая работа, которая будет совершаться полем, будет происходить за счет уменьшения потенциальной энергии.

Формула  1 — Потенциал

 

  Потенциал электрического поля это энергетическая характеристика поля. Он представляет собой работу которую нужно совершить против сил электрического поля для того чтобы переместить единичный положительный точечный заряд находящийся на бесконечности в данную точку поля.

  Измеряется потенциал электрического поля в вольтах.

  В случае если поле создается несколькими зарядами, которые расположены в произвольном порядке. Потенциал в данной точке такого поля будет представлять собой алгебраическую сумму всех потенциалов, которые создают заряды каждый в отдельности. Это так называемый принцип суперпозиции.

Формула 2 — суммарный потенциал разных зарядов

 

  Допустим, что в электрическом поле заряд перемещается из точки "a" в точку "b". Работа совершается против силы электрического поля. Соответственно потенциалы в этих точках будут отличаться.

Формула 3 — Работа в электрическом поле

Рисунок 1 — перемещение заряда в электрическом поле

 

  Разность потенциалов двух точек поля будет равна одному Вольту, если для того чтобы переместить заряд в один кулон между ними необходимо совершить работу в один джоуль.

 Если заряды имеют одинаковые знаки, то потенциальная энергия взаимодействия между ними будет положительна. В этом случае заряды отталкиваются друг от друга.

 Для разноименных зарядов энергия взаимодействия будет отрицательна. Заряды в этом случае будут, притягивается друг к другу.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]