- •Вопросы для односеместрового курса
- •Кинематика движения материальной точки. Траектория, радиус-вектор, перемещение, путь, скорость, ускорение. Кинематика движения по окружности.
- •2. Динамика материальной токи. Законы Ньютона. Импульс. Закон сохранения импульса.
- •4. Понятие момента импульса и момента силы относительно точки и неподвижной оси вращения. Уравнение моментов.
- •5. Понятие момента инерции тела. Пример расчета. Теорема Штейнера.
- •6. Основное уравнение динамики вращательного движения твердого тела. Закон сохранения момента импульс. Основное уравнение динамики вращательного движения
- •7. Свободное незатухающие механические колебания.
- •8. Физический и математический маятник. Уравнение колебаний.
- •10. Вынужденные механические колебания. Резонанс.
- •11. Волны. Уравнение волны.
- •12. Термодинамический метод исследования, понятие о равновесном процессе. Уравнение состояния идеального газа, изопроцессы.
- •13. Первый закон термодинамики, его содержание. Адиабатический процесс.
- •14. Второй закон термодинамики, его физическое содержание. Формулировка второго закона термодинамики. Понятие энтропии.
- •16. Функция распределения Максвелла по модулю скорости. Физический смысл, свойства.
- •17. Распределение частиц в потенциальном поле (распределение Больцмана). Барометрическая формула.
- •18. Диффузия: уравнение Фика, физический смысл входящих величин.
- •19. Теплопроводимость: уравнение Фурье, физический смысл входящих величин.
- •Закон теплопроводности Фурье
- •20. Вязкость: уравнение Ньютона, физический смысл входящих величин.
- •21. Электрическое поле в вакууме. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции
- •22. Поток вектора напряженности электрического поля. Теорема Гаусса.
- •23. Теорема о циркуляции вектора напряженности. Потенциал
- •24. Силовые и эквипотенциальные линии. Связь между напряженностью и потенциалом
- •25. Магн. Поле в вакууме. Магн. Индукция. Закон Био-Савара-Лапласа.
- •27. Движение заряда в магнитном поле. Взаимодействие токов
- •28. Электромагнитная индукция закон фарадея правило ленца
- •Самоиндукция и взаимоиндукция эдс самоиндукции
- •Эдс взаимоиндукции
- •29. Вихревое электрическое поле. Ток смещения. Уравнения Максвелла
- •30. Понятие когерентных волн. Условие максимума и минимума интенсивности..
- •31. Интерференция от двух источников. Координаты максимумов и минимумов...
- •32. Интерференция в тонких пленках. Кольца Ньютона
- •33. Дифракция: принцип Гюйгенса-Френеля, метод зон Френеля (пример расчета радиуса зоны Френеля).
- •Принцип Гюйгенса-Френеля
- •Метод зон Френеля
- •34. Дифракция на щели и дифракционной решетке. Угловая дисперсия и разрешающая способность дифракционной решетки.
- •35. Естественный и поляризованный свет. Поляризация в поляроидах: закон Малюса. Поляризация при отражении: закон Брюстера. Двойное лучепреломление.
- •37. Законы теплового излучения (Стефана-Больцмана и Вина). Гипотеза и формула Планка для абсолютно черного тела. Закон Стефана — Больцмана
- •38. Внешний фотоэффект. Вольт-амперная характеристика. Законы внешнего фотоэффекта.
- •39. Гипотеза де-Бройля. Волновая функция, ее статистический смысл и свойства.
- •40. Соотношение неопределенностей Гейзенберга.
- •41. Стационарное уравнение Шредингера.
- •42. Квантовомеханическая теория атома водорода. Квантование энергии, момента импульса и проекции момента импульса электрона в атоме.
- •43. Многоэлектронные атомы, заполнение электронных оболочек.
- •44. Структура атомных ядер. Дефект массы и энергии связи. Устойчивость ядер. Деление и синтез ядер.
- •45.Закон радиоактивного распада: период полураспада и постоянная распада, среднее время жизни, активность. Виды распада.
22. Поток вектора напряженности электрического поля. Теорема Гаусса.
23. Теорема о циркуляции вектора напряженности. Потенциал
Существуют два равнозначных определения консервативной силы. Оба они подробно обсуждались в механике.
Консервативной называется сила, работа которой не зависит от формы траектории.
Консервативной называется сила, работа которой на замкнутой траектории равна нулю.
Рассмотрим
перемещение заряда q в
электростатическом поле
по
замкнутой траектории (рис. 3.5.). Заряд из
точки 1 перемещается по пути L1 в точку
2, а затем возвращается в исходное
положение по другому пути L2.
В процессе этого движения на заряд со
стороны поля действует консервативная
электрическая сила:
.
Работа этой силы на замкнутой траектории L = L1 + L2 равна нулю:
.
Это уравнение, упростив, запишем так:
. (3.18)
Разберём
подробно последнее уравнение.
Подынтегральное выражение — элементарная
работа электрической силы, действующей
на единичный положительный заряд, на
перемещении
(рис.
3.6.):
, (3.19)
здесь q = 1 — единичный заряд.
При подсчёте работы на замкнутой траектории необходимо сложить элементарные работы электрической силы на всех участках траектории. Иными словами, проинтегрировать (3.19) по замкнутому контуру L:
. (3.20)
Интеграл
по замкнутому контуру
=
называется
циркуляцией вектора напряжённости
электростатического поля по контуру
L. По своей сути
циркуляция вектора напряжённости —
это работа электростатического поля,
совершаемая при перемещении по замкнутому
контуру единичного положительного
заряда.
Так как речь идёт о работе консервативной силы, то на замкнутой траектории она равна нулю:
.
Теорема о циркуляции в электростатике: циркуляция вектора напряжённости электростатического поля по любому замкнутому контуру равна нулю.
Потенциал
Потенциал электрического поля представляет собой отношение потенциальной энергии к заряду. Как известно электрическое поле является потенциальным. Следовательно, любое тело находящиеся в этом поле обладает потенциальной энергией. Любая работа, которая будет совершаться полем, будет происходить за счет уменьшения потенциальной энергии.
Формула 1 — Потенциал
Потенциал электрического поля это энергетическая характеристика поля. Он представляет собой работу которую нужно совершить против сил электрического поля для того чтобы переместить единичный положительный точечный заряд находящийся на бесконечности в данную точку поля.
Измеряется потенциал электрического поля в вольтах.
В случае если поле создается несколькими зарядами, которые расположены в произвольном порядке. Потенциал в данной точке такого поля будет представлять собой алгебраическую сумму всех потенциалов, которые создают заряды каждый в отдельности. Это так называемый принцип суперпозиции.
Формула 2 — суммарный потенциал разных зарядов
Допустим, что в электрическом поле заряд перемещается из точки "a" в точку "b". Работа совершается против силы электрического поля. Соответственно потенциалы в этих точках будут отличаться.
Формула 3 — Работа в электрическом поле
Рисунок 1 — перемещение заряда в электрическом поле
Разность потенциалов двух точек поля будет равна одному Вольту, если для того чтобы переместить заряд в один кулон между ними необходимо совершить работу в один джоуль.
Если заряды имеют одинаковые знаки, то потенциальная энергия взаимодействия между ними будет положительна. В этом случае заряды отталкиваются друг от друга.
Для разноименных зарядов энергия взаимодействия будет отрицательна. Заряды в этом случае будут, притягивается друг к другу.
