- •Вопросы для односеместрового курса
- •Кинематика движения материальной точки. Траектория, радиус-вектор, перемещение, путь, скорость, ускорение. Кинематика движения по окружности.
- •2. Динамика материальной токи. Законы Ньютона. Импульс. Закон сохранения импульса.
- •4. Понятие момента импульса и момента силы относительно точки и неподвижной оси вращения. Уравнение моментов.
- •5. Понятие момента инерции тела. Пример расчета. Теорема Штейнера.
- •6. Основное уравнение динамики вращательного движения твердого тела. Закон сохранения момента импульс. Основное уравнение динамики вращательного движения
- •7. Свободное незатухающие механические колебания.
- •8. Физический и математический маятник. Уравнение колебаний.
- •10. Вынужденные механические колебания. Резонанс.
- •11. Волны. Уравнение волны.
- •12. Термодинамический метод исследования, понятие о равновесном процессе. Уравнение состояния идеального газа, изопроцессы.
- •13. Первый закон термодинамики, его содержание. Адиабатический процесс.
- •14. Второй закон термодинамики, его физическое содержание. Формулировка второго закона термодинамики. Понятие энтропии.
- •16. Функция распределения Максвелла по модулю скорости. Физический смысл, свойства.
- •17. Распределение частиц в потенциальном поле (распределение Больцмана). Барометрическая формула.
- •18. Диффузия: уравнение Фика, физический смысл входящих величин.
- •19. Теплопроводимость: уравнение Фурье, физический смысл входящих величин.
- •Закон теплопроводности Фурье
- •20. Вязкость: уравнение Ньютона, физический смысл входящих величин.
- •21. Электрическое поле в вакууме. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции
- •22. Поток вектора напряженности электрического поля. Теорема Гаусса.
- •23. Теорема о циркуляции вектора напряженности. Потенциал
- •24. Силовые и эквипотенциальные линии. Связь между напряженностью и потенциалом
- •25. Магн. Поле в вакууме. Магн. Индукция. Закон Био-Савара-Лапласа.
- •27. Движение заряда в магнитном поле. Взаимодействие токов
- •28. Электромагнитная индукция закон фарадея правило ленца
- •Самоиндукция и взаимоиндукция эдс самоиндукции
- •Эдс взаимоиндукции
- •29. Вихревое электрическое поле. Ток смещения. Уравнения Максвелла
- •30. Понятие когерентных волн. Условие максимума и минимума интенсивности..
- •31. Интерференция от двух источников. Координаты максимумов и минимумов...
- •32. Интерференция в тонких пленках. Кольца Ньютона
- •33. Дифракция: принцип Гюйгенса-Френеля, метод зон Френеля (пример расчета радиуса зоны Френеля).
- •Принцип Гюйгенса-Френеля
- •Метод зон Френеля
- •34. Дифракция на щели и дифракционной решетке. Угловая дисперсия и разрешающая способность дифракционной решетки.
- •35. Естественный и поляризованный свет. Поляризация в поляроидах: закон Малюса. Поляризация при отражении: закон Брюстера. Двойное лучепреломление.
- •37. Законы теплового излучения (Стефана-Больцмана и Вина). Гипотеза и формула Планка для абсолютно черного тела. Закон Стефана — Больцмана
- •38. Внешний фотоэффект. Вольт-амперная характеристика. Законы внешнего фотоэффекта.
- •39. Гипотеза де-Бройля. Волновая функция, ее статистический смысл и свойства.
- •40. Соотношение неопределенностей Гейзенберга.
- •41. Стационарное уравнение Шредингера.
- •42. Квантовомеханическая теория атома водорода. Квантование энергии, момента импульса и проекции момента импульса электрона в атоме.
- •43. Многоэлектронные атомы, заполнение электронных оболочек.
- •44. Структура атомных ядер. Дефект массы и энергии связи. Устойчивость ядер. Деление и синтез ядер.
- •45.Закон радиоактивного распада: период полураспада и постоянная распада, среднее время жизни, активность. Виды распада.
Принцип Гюйгенса-Френеля
Световая волна, возбуждаемая каким-либо источником света, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками.
Дифракционные
явления присущи всем волновым процессам,
но особенно отчетливо проявляются лишь
в тех случаях, когда длины волн излучений
сопоставимы с размерами препятствий.
Так, звуковые волны хорошо слышны за
углом дома, т.е. звуковая волна его
огибает. Для наблюдения же дифракции
световых волн необходимо создание
специальных условий. Это обусловлено
малостью длин световых волн (λ<1мкм).
Метод зон Френеля
Метод Френеля объясняет прямолинейность распространения света в свободной от препятствий однородной среде. Чтобы показать это, рассмотрим действие сферической световой волны от точечного источника S0в произвольной точке пространстваР.
Волновая поверхность Ф разбивается на зоны так, чтобы расстояния от краев зоны до точки наблюдения Р отличались на /2:
Р0РР1РР2Р…= /2,
тогда колебания в точку Рприходят в противофазе, и амплитуда результирующего колебания:
А = А1 А2 + А3 А4 + … Аm (1)
34. Дифракция на щели и дифракционной решетке. Угловая дисперсия и разрешающая способность дифракционной решетки.
Угловая дисперсия и разрешающая способность дифракционной решетки
Основными характеристиками любого спектрального прибора являются его дисперсия и разрешающая способность.
Угловой дисперсией называется величина:
.
()
Здесь
-
угловое расстояние между близкими
спектральными линиями,
-
разность их длин волн.
35. Естественный и поляризованный свет. Поляризация в поляроидах: закон Малюса. Поляризация при отражении: закон Брюстера. Двойное лучепреломление.
Поляризация света. Естественный и поляризованный свет. Закон Малюса. Закон Брюстера. Распространение электромагнитных волн в одноосных кристаллах. Двойное лучепреломление. Поляризационные призмы и поляроиды.
Поляризованный свет - свет в котором колебания светового вектора, каким то образом упорядочены.
Естественный свет - свет в котором все направления колебания светового вектора Е равновероятны.
Закон Малюса: I=I0*cos2α
Закон Брюстера: Закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называется углом Брюстера.
Закон
Брюстера:
,
где n21 — показатель преломления второй
среды относительно первой, θBr — угол
падения (угол Брюстера).
Одноосные и двухосные кристаллы - кристаллы с одним или двумя направлениями вдоль которых существует двойное лучепрломление.
Двойное лучепреломление — эффект расщепления в анизотропных средах луча света на две составляющие. Если луч света падает перпендикулярно к поверхности кристалла, то на этой поверхности он расщепляется на два луча. Первый луч продолжает распространяться прямо, и называется обыкновенным, второй же отклоняется в сторону, нарушая обычный закон преломления света, и называется необыкновенным.
36. Тепловое излучение: основные понятия. Абсолютно черное тело. Закон Кирхгофа.
Тело называется абсолютно черным, если оно при любой температуре полностью поглощает все падающее на него излучение
Закон Кирхгофа: Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности н.з. от природы тела; оно является для всех тел универсальной ф-цией частоты. (длины волны) и температуры:
.
Для черного тела
=1,
поэтому из закона Кирхгофа вытекает,
что для
черного тела равна .
Таким образом, универсальная функция
Кирхгофа есть не что иное, как
спектральная плотность энергетической
светимости черного тела. Энергетическая
светимость АЧТ зависит только от
температуры, т.е. Энергетическая
светимость АЧТ пропорциональна четвертой
степени его термодинамической
температуры: , где σ
- постоянная Больцмана. Этот закон –
закон Стефана-Больцмана. Задача отыскания
вида функции Кирхгофа (выяснения
спектрального состава излучения ЧТ
