- •Вопросы для односеместрового курса
- •Кинематика движения материальной точки. Траектория, радиус-вектор, перемещение, путь, скорость, ускорение. Кинематика движения по окружности.
- •2. Динамика материальной токи. Законы Ньютона. Импульс. Закон сохранения импульса.
- •4. Понятие момента импульса и момента силы относительно точки и неподвижной оси вращения. Уравнение моментов.
- •5. Понятие момента инерции тела. Пример расчета. Теорема Штейнера.
- •6. Основное уравнение динамики вращательного движения твердого тела. Закон сохранения момента импульс. Основное уравнение динамики вращательного движения
- •7. Свободное незатухающие механические колебания.
- •8. Физический и математический маятник. Уравнение колебаний.
- •10. Вынужденные механические колебания. Резонанс.
- •11. Волны. Уравнение волны.
- •12. Термодинамический метод исследования, понятие о равновесном процессе. Уравнение состояния идеального газа, изопроцессы.
- •13. Первый закон термодинамики, его содержание. Адиабатический процесс.
- •14. Второй закон термодинамики, его физическое содержание. Формулировка второго закона термодинамики. Понятие энтропии.
- •16. Функция распределения Максвелла по модулю скорости. Физический смысл, свойства.
- •17. Распределение частиц в потенциальном поле (распределение Больцмана). Барометрическая формула.
- •18. Диффузия: уравнение Фика, физический смысл входящих величин.
- •19. Теплопроводимость: уравнение Фурье, физический смысл входящих величин.
- •Закон теплопроводности Фурье
- •20. Вязкость: уравнение Ньютона, физический смысл входящих величин.
- •21. Электрическое поле в вакууме. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции
- •22. Поток вектора напряженности электрического поля. Теорема Гаусса.
- •23. Теорема о циркуляции вектора напряженности. Потенциал
- •24. Силовые и эквипотенциальные линии. Связь между напряженностью и потенциалом
- •25. Магн. Поле в вакууме. Магн. Индукция. Закон Био-Савара-Лапласа.
- •27. Движение заряда в магнитном поле. Взаимодействие токов
- •28. Электромагнитная индукция закон фарадея правило ленца
- •Самоиндукция и взаимоиндукция эдс самоиндукции
- •Эдс взаимоиндукции
- •29. Вихревое электрическое поле. Ток смещения. Уравнения Максвелла
- •30. Понятие когерентных волн. Условие максимума и минимума интенсивности..
- •31. Интерференция от двух источников. Координаты максимумов и минимумов...
- •32. Интерференция в тонких пленках. Кольца Ньютона
- •33. Дифракция: принцип Гюйгенса-Френеля, метод зон Френеля (пример расчета радиуса зоны Френеля).
- •Принцип Гюйгенса-Френеля
- •Метод зон Френеля
- •34. Дифракция на щели и дифракционной решетке. Угловая дисперсия и разрешающая способность дифракционной решетки.
- •35. Естественный и поляризованный свет. Поляризация в поляроидах: закон Малюса. Поляризация при отражении: закон Брюстера. Двойное лучепреломление.
- •37. Законы теплового излучения (Стефана-Больцмана и Вина). Гипотеза и формула Планка для абсолютно черного тела. Закон Стефана — Больцмана
- •38. Внешний фотоэффект. Вольт-амперная характеристика. Законы внешнего фотоэффекта.
- •39. Гипотеза де-Бройля. Волновая функция, ее статистический смысл и свойства.
- •40. Соотношение неопределенностей Гейзенберга.
- •41. Стационарное уравнение Шредингера.
- •42. Квантовомеханическая теория атома водорода. Квантование энергии, момента импульса и проекции момента импульса электрона в атоме.
- •43. Многоэлектронные атомы, заполнение электронных оболочек.
- •44. Структура атомных ядер. Дефект массы и энергии связи. Устойчивость ядер. Деление и синтез ядер.
- •45.Закон радиоактивного распада: период полураспада и постоянная распада, среднее время жизни, активность. Виды распада.
32. Интерференция в тонких пленках. Кольца Ньютона
При
падении светового пучка на тонкую пленку
под углом α происходит
его разделение на две волны, направления
которых обозначены лучами 1 и 2 (рис.16.9).
Волна 1 отражается от верхней границы
пленки, волна 2 преломляется, отражается
он нижней границы пленки, преломляется
на верхней границе пленки и выходит из
пленки. Эти волны являются когерентными
волнами, которые образуются из одной
первичной волны и проходят разный
оптический путь. При наложении этих
волн они интерферируют и результат
интерференции зависит от оптической
разности хода этих волн. Если на пленку
падает белый свет, состоящий из световых
волн разной длины волны, то условию
максимума (16.6) при интерференции будут
удовлетворять только волны какой- то
определенной длины. Поэтому на поверхности
пленки под разными углами зрения будут
наблюдаться разноцветные радужные
полосы. Эти полосы называются полосами
равного наклона.
Если свет падает на пленку с переменной толщиной и отражается от нее (рис.16.10), то условие максимума (16.6) при интерференции лучей 1 и 2 будет выполняться только для определенных толщин d пленки. На поверхности пленки образуются яркие полосы, под которыми толщина пленки удовлетворяет условию максимума (16.6). Эти полосы называются полосами равной толщины. Если на пленку падает белый свет, то полосы будут иметь радужную окраску.
А
теперь вспомните, как переливаются
всеми цветами радуги мыльные пузыри,
бензиновые пленки на поверхности воды
в речном порту или на асфальте после
дождя. Объясните эти явления.
Интерференционная картина возникает при отражении света от стеклянной пластины и положенной на нее плосковыпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны R (рис.16.11). В этом случае накладываются лучи 1 и 2, отраженные от двух границ тонкой прослойки воздуха между линзой и пластинкой. Если толщина воздушной прослойки d удовлетворяет условию максимума (16.6), то лучи при интерференции усиливают друг друга, на расстоянии rk от оси симметрии возникает светлое пятно. Ясно, что все светлые пятна, под которыми толщина воздушной прослойки равна d, находятся на окружности радиуса rk и образуют в отраженном свете светлое кольцо радиуса rk . Таких светлых колец будет много, каждому из них соответствует различные толщины воздушного зазора, при которых выполняется условие максимума (16.6). Эти кольца являются полосами равной толщины и получили название колец Ньютона.
Радиусы колец Ньютона зависят от длины волны света λ0 , показателя преломления n среды, заполняющей зазор (для воздуха n =1), от радиуса кривизны R линзы и от номера k кольца:
, k =
1, 2, 3, …. (16.9)
В белом свете кольца Ньютона имеют радужную окраску. Кольца Ньютона наблюдаются и в проходящем свете. Попробуйте на рисунке 16.11 показать лучи 1 и 2, которые интерферируют в проходящем свете.
33. Дифракция: принцип Гюйгенса-Френеля, метод зон Френеля (пример расчета радиуса зоны Френеля).
Дифракциейназывается огибание волнами препятствий, встречающихся на их пути, или в более широком смысле любое отклонение распространения волн вблизи препятствий от законов геометрической оптики.Слово дифракция происходит от латинского словаdiffractus преломленный.
