- •1.Классификация мрс по методу обработки
- •2. Классификация мрс по технологическому назначению.
- •3.Классификация мрс по универсальности, точности и массе.
- •4.Основные показатели станков. Обозначение станков.
- •5. Методы образования поверхностей.
- •6.Движения в станках
- •7. Внешняя и внутренняя кинематические связи в станках
- •8. Назначение и конструктивные особенности коробок скоростей.
- •9. Назначение и конструктивные особенности коробок подач
- •10. Механизмы обеспечения точности обработки
- •11.Делительные механизмы.
- •12. Реверсирующие и суммирующие механизмы
- •13. Гидрооборудование металлорежущих станков
- •14. Виды токарных станков
- •15. Токарно-винторезные станки
- •17. Способы получения конусной поверхности на токарном станке.
- •2. Способы получения конических поверхностей на токарном станке
- •18. Лобовые и токарно-карусельные станки
- •19. Токарно-револьверные станки
- •20. Виды токарных автоматов и полуавтоматов
- •21. Сверлильные станки
- •Разновидности сверлильного оборудования
- •Типы универсального сверлильного оборудования
- •22. Основные узлы станка 2а135, рабочие движения
- •23. Расточные станки
- •Виды расточных станков
- •24. Виды фрезерных станков Виды фрезерных станков
- •25. Консольно – фрезерные станки.
- •26. Основные узлы и рабочие движения 6р10. (!)
- •Перечень составных частей фрезерного станка 6р80, 6р80г
- •27. Строгальные, долбежные и протяжные станки
- •28. Основные узлы и рабочие движения в станке 7б35 (!)
- •30. Назначение и виды шлифовальных станков
- •32. Методы зубонарезания.
- •33. Станки для получения зубчатых колес
- •35. Агрегатные станки
- •36. Автоматические линии
- •37. Системы управления станками.
- •38. Электроэрозионные методы обработки, назначение
- •39. Плазменная обработка, виды, область применения.
- •40. Электронно-лучевая обработка, область применения.
- •41. Лазерная обработка, область применения.
- •42. Электрохимическая обработка, область применения.
- •43. Ультразвуковая обработка, область применения.
- •44. Магнитно-абразивная обработка, область применения.
- •45. Водоструйная и абразивно-струйная обработка, область применения.
- •Основные области применения
- •46. Промышленные роботы, назначение и классификация.
- •47. Эксплуатация и ремонт машиностроительного оборудования
40. Электронно-лучевая обработка, область применения.
Электронно-лучевая обработка основана на превращении кинетической энергии пучка электронов в тепловую. Тепловая энергия выделяется при столкновении быстродвижущихся электронов с обрабатываемым материалом. Высокая плотность энергии сфокусированного электронного луча позволяет осуществлять размерную обработку детали вследствие расплавления и испарения материала с узколокального участка.
В оборудование для электронно-лучевой обработки входят обычно электронная пушка, вакуумная камера с вакуумной системой и источник питания с аппаратурой управления процессом. В электронной пушке производится генерирование электронов, формирование их в пучки и разгон до высоких скоростей.
При размерной обработке заготовок установка работает в импульсном режиме, что обеспечивает локальный нагрев заготовки. В зоне обработки температура достигает 6000?С, а на расстоянии 1 мкм от кромки луча она не превышает 300?С. Продолжительность импульсов и интервалы между ними подбирают такими, чтобы за один цикл успел нагреться и испариться металл только под лучом, а теплота не успела распространиться по объему заготовки.
К основным преимуществам электронно-лучевой обработке следует отнести: возможность широкого регулирования режимов и тонкого управления тепловыми процессами; пригодность для обработки металлических и неметаллических материалов; высокий коэффициент полезного действия (до 98%); возможность автоматизации процесса. Кроме того, возможность сканирования электронного луча позволяет использовать этот вид обработки для изготовления фасонных щелей и пазов в труднообрабатываемых материалах (рубин, керамика, кварц, тантал, цирконий, вольфрам и др).
Наиболее перспективно применение электронно-лучевой обработки в области технологии радио- и микроэлектроники.
Основными недостатками электронно-лучевой технологии являются: необходимость защиты от рентгеновского излучения, относительно высокая стоимость и сложность оборудования и необходимость глубокого вакуума.
41. Лазерная обработка, область применения.
Лазерная обработка металлов — это резка и гравировка металла с помощью применения специальных современных лазеров. Появление лазерной обработки значительно расширило возможности для работы с самыми различными видами металлов, в том числе и с таким востребованным на сегодняшний день черным металлопрокатом. Одними из главных преимуществ лазерной обработки по сравнению со всеми другими видами является исключительная точность и четкость с которой можно резать и гравировать различные металлы. Также обработка с применением лазера дает возможность справится даже с наиболее прочными и твердыми металлами. Причем скорость обработки металлов с применением лазера (около 3 мм в секунду) и с применением каких-либо других способов существенно отличается, еще раз доказывая преимущества лазерной обработки.
Лазерные технологии демонстрируют свою эффективность как в тех областях, где требуется обработка листового материала, так и при производстве высокотехнологичной продукции, например при производстве электроники для систем навигации и слежения, солнечных элементов, плазменных панелей и т.д.
