- •1.Классификация мрс по методу обработки
- •2. Классификация мрс по технологическому назначению.
- •3.Классификация мрс по универсальности, точности и массе.
- •4.Основные показатели станков. Обозначение станков.
- •5. Методы образования поверхностей.
- •6.Движения в станках
- •7. Внешняя и внутренняя кинематические связи в станках
- •8. Назначение и конструктивные особенности коробок скоростей.
- •9. Назначение и конструктивные особенности коробок подач
- •10. Механизмы обеспечения точности обработки
- •11.Делительные механизмы.
- •12. Реверсирующие и суммирующие механизмы
- •13. Гидрооборудование металлорежущих станков
- •14. Виды токарных станков
- •15. Токарно-винторезные станки
- •17. Способы получения конусной поверхности на токарном станке.
- •2. Способы получения конических поверхностей на токарном станке
- •18. Лобовые и токарно-карусельные станки
- •19. Токарно-револьверные станки
- •20. Виды токарных автоматов и полуавтоматов
- •21. Сверлильные станки
- •Разновидности сверлильного оборудования
- •Типы универсального сверлильного оборудования
- •22. Основные узлы станка 2а135, рабочие движения
- •23. Расточные станки
- •Виды расточных станков
- •24. Виды фрезерных станков Виды фрезерных станков
- •25. Консольно – фрезерные станки.
- •26. Основные узлы и рабочие движения 6р10. (!)
- •Перечень составных частей фрезерного станка 6р80, 6р80г
- •27. Строгальные, долбежные и протяжные станки
- •28. Основные узлы и рабочие движения в станке 7б35 (!)
- •30. Назначение и виды шлифовальных станков
- •32. Методы зубонарезания.
- •33. Станки для получения зубчатых колес
- •35. Агрегатные станки
- •36. Автоматические линии
- •37. Системы управления станками.
- •38. Электроэрозионные методы обработки, назначение
- •39. Плазменная обработка, виды, область применения.
- •40. Электронно-лучевая обработка, область применения.
- •41. Лазерная обработка, область применения.
- •42. Электрохимическая обработка, область применения.
- •43. Ультразвуковая обработка, область применения.
- •44. Магнитно-абразивная обработка, область применения.
- •45. Водоструйная и абразивно-струйная обработка, область применения.
- •Основные области применения
- •46. Промышленные роботы, назначение и классификация.
- •47. Эксплуатация и ремонт машиностроительного оборудования
38. Электроэрозионные методы обработки, назначение
Электроэрозионные методы обработки, основанные на использовании тепла электрических разрядов, возбуждаемых между инструментом и заготовкой. К ним относятся: электроискровая, электроимпульсная, электроконтактная и анодно-механическая обработки.
Электроискровая обработка основана на использовании кратковременных искровых разрядов. Заготовку (анод) и инструмент (катод) подключают к источнику питания с напряжением, достаточным для возбуждения искровых разрядов. Для получения этих разрядов используют релаксационные генераторы импульсов. Применяется для упрочнения и восстановления поверхностей деталей.
Электроимпульсная обработка основана на использовании явления электрической эрозии металлов в жидкой диэлектрической среде (обычно минеральное масло). Заготовка является катодом, а инструмент – анодом. Поэтому основное воздействие на обработываемую поверхность оказывают не электроны, а ионы. Применяется для прошивки, обработке инструментов и др.
Электроконтактная обработка основана на электромеханическом разрушении обрабатываемого металла на воздухе, без применения электролита. Заготовку и инструмент(обычно диск) подключают к источнику переменного или постоянного тока. Металл разрушается под воздействием электродуговых разрядов при быстро перемещающемся инструменте относительно обрабатываемой заготовки. Ее применяют для резки заготовок, заточки инструмента, плоского шлифования, прошивки отверстий и другой черновой обработки плоских и криволинейных поверхностей.
Анодно-механическая обработка основана на электрохимическом и электротермическом разрушении обрабатываемого металла. Инструмент является катодом, а заготовка – анодом. В процессе работы обрабатываемая зона заготовки поливается электролитом черех шланг так, чтобы зазор между диском и заготовкой был всегда заполнен рабочей жидкостью.
39. Плазменная обработка, виды, область применения.
Плазменная обработка, обработка материалов низкотемпературной плазмой, генерируемой дуговыми или высокочастотными плазматронами. При П. о. изменяется форма, размеры, структура обрабатываемого материала или состояние его поверхности. П. о. включает: разделительную и поверхностную резку, нанесение покрытий, наплавку, сварку, разрушение горных пород (плазменное бурение).
П. о. получила широкое распространение вследствие высокой по промышленным стандартам температуры плазмы (~ 104 К), большого диапазона регулирования мощности и возможности сосредоточения потока плазмы на обрабатываемом изделии; при этом эффекты П. о. достигаются как тепловым, так и механическим действием плазмы.
Резка металлов осуществляется сжатой плазменной дугой, которая горит между анодом (разрезаемым металлом) и катодом плазменной горелки. Стабилизация и сжатие токового канала дуги, повышающее её температуру, осуществляются соплом горелки и обдуванием дуги потоком плазмообразующего газа. Для интенсификации резки металлов используется химически активная плазма. Плазменные покрытия отличаются пониженной теплопроводностью и хорошо противостоят термическим ударам. Сварка плазменной дугой отличается высокой производительностью и, вследствие большой стабильности горения дуги, хорошим качеством.
Применяется для резки цветных металлов, а в особенности алюминия, обязательна плазменная резка. Кроме того, только эта технология позволяет выполнять фигурную резку металла. Одну и ту же работу техникой плазменной обработки металла в сравнении с газовой резкой выполняют быстрее. Высокая производительность плазменной резки позволяет применять её в поточных непрерывных производственных процессах. Неэлектропроводные материалы (бетоны, гранит, тонколистовые органические материалы)
