Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГИА.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.05 Mб
Скачать

28. Основные понятия теории вероятностей: случайные события, величины, характеристики и функции.

Ответ:

Теория вероятностей – математическая наука, изучающая закономерности в случайных явлениях. Одним из основных понятий теории вероятностей является понятие случайного события (или просто события).

Событием называется любой факт, который в результате опыта может произойти или не произойти. Примеры случайных событий: выпадение шестерки при подбрасывании игральной кости, отказ технического устройства, искажение сообщения при передаче его по каналу связи. С событиями связываются некоторые числа, характеризующие степень объективной возможности появления этих событий, называемые вероятностями событий.

К понятию «вероятность» существует несколько подходов.

Современное построение теории вероятностей основывается на аксиоматическом подходе и опирается на элементарные понятия теории множеств. Такой подход называется теоретико-множественным.

Пусть производится некоторый опыт со случайным исходом. Рассмотрим множество W всех возможных исходов опыта; каждый его элемент будем называть элементарным событием, а множество Ω – пространством элементарных событий. Любое событие A в теоретико-множественной трактовке есть некоторое подмножество множества Ω: .

Достоверным называется событие W, которое происходит в каждом опыте.

Невозможным называется событие Æ, которое в результате опыта произойти не может.

Несовместными называются события, которые в одном опыте не могут произойти одновременно.

Суммой (объединением) двух событий A и B (обозначается A+B, AÈB) называется такое событие, которое заключается в том, что происходит хотя бы одно из событий, т.е. A или B, или оба одновременно.

Произведением (пересечением) двух событий A и B (обозначается A×B, AÇB) называется такое событие, которое заключается в том, что происходят оба события A и B вместе.

Противоположным к событию A называется такое событие , которое заключается в том, что событие A не происходит.

События Ak (k=1, 2, ..., n) образуют полную группу, если они попарно несовместны и в сумме образуют достоверное событие.

  Каждый закон распределения представляет собой некоторую функцию, и указание этой функции полностью описывает случайную величину с вероятностной точки зрения.     Однако во многих вопросах практики нет необходимости характеризовать случайную величину полностью, исчерпывающим образом. Зачастую достаточно бывает указать только отдельные числовые параметр, до некоторой степени характеризующие, существенные черты распределения случайной величины: например, какое-то среднее значение, около которого группируются возможные значения случайной величины; какое-либо число, характеризующее степень разбросанности этих значений относительно среднего, и т. д. Пользуясь такими характеристиками, мы хотим все существенные сведения относительно случайной величины, которыми мы располагаем, выразить наиболее компактно с помощью минимального числа числовых параметров. Такие характеристики, назначение которых — выразить в сжатой форме наиболее существенные особенности распределения, называются числовыми характеристиками случайной величины.     В теории вероятностей числовые характеристики и операции с ними играют огромную роль. С помощью числовых характеристик существенно облегчается решение многих вероятностных задач. Очень часто удается решить задачу до конца, оставляя в стороне законы распределения и оперируя одними числовыми характеристиками. При этом весьма важную роль играет то обстоятельство, что когда в задаче фигурирует большое количество случайных величин, каждая из которых оказывает известное влияние на численный результат опыта, то закон распределения этого результата в значительной мере можно считать независимым от законов распределения отдельных случайных величин (возникает так называемый нормальный закон распределения). В этих случаях по существу задачи для исчерпывающего суждения о результирующем законе распределения не требуется знать законов распределения отдельных случайных величин, фигурирующих в задаче; достаточно знать лишь некоторые числовые характеристики этих величин.     В теории вероятностей и математической статистике применяется большое количество различных числовых характеристик, имеющих различное назначение и различные области применения. Из них в настоящем курсе мы введем только некоторые, наиболее часто применяемые.