- •2. Вычислительные системы (вс), их классификация, назначение и типовые структуры. Многопрограммные, многомашинные и многопроцессорные вс.
- •3. Вычислительные сети обработки информации: классификация, принципы организации. Основные протоколы передачи данных и методы доступа к передающей среде.
- •4. Вычислительные сети: аппаратное и программное обеспечение. Способы подключения к сети Internet. Адресное пространство в сети Internet.
- •5. Назначение и состав операционных систем (ос) эвм. Операционные системы, применяемые в составе системного программного обеспечения пэвм, их структура и основные компоненты.
- •6. Операционные системы семейства Windows и Linux: основные характеристики, возможности, различия.
- •7. Основные понятия Баз данных. Модели организации базы данных. Базы знаний.
- •8. Классификация и применение пакетов прикладных программ в экономике.
- •9. Основные принципы построения компьютерных изображений. Типы графических файлов, их структура и методы кодирования.
- •10. Именование и разрешение имени. Домены верхнего уровня сети Internet
- •11. Современные средства проектирования информационных систем в экономике.
- •12. Проектирование информационных систем на основе объектно-ориентированного программирования.
- •13. Статистический, комбинаторный, алгоритмический и кибернетический подходы к измерению количества информации. Семантический, синтактический и прагматические системы изучения информации.
- •14. Основные элементы и носители информации в экономических системах. Виды и формы представление данных. Документирование информации. Особенности электронного документооборота. Электронная подпись.
- •15. Проблема изучения информационных систем предприятия. Модели формирования документов и массивов.
- •16. Использование языка дискретной математики для описания данных. Информационные отношения и структуры данных. Реляционные базы данных.
- •17. Понятие систем счисления. Многочленная форма представления чисел. Преимущество позиционных систем счисления. Формы и методы представления чисел в памяти эвм. Проблемы технической реализации.
- •18. Функциональная структура эвм. Принципы программного управления. Взаимодействие функциональных устройств эвм при выполнении программы пользователя.
- •19. Интеллектуальные информационные системы (иис): основные понятия и определения. Классификация иис.
- •20. Экспертные системы: составные части, этапы проектирования.
- •22. Конструкторы и деструкторы. Этапы проектирования. Особенности программирования в оконных операционных средах.
- •23. Информационные технологии конечного пользователя: пользовательский интерфейс и его виды. Технологии обработки данных.
- •24. Сетевые информационные технологии. Интеграция информационных технологий.
- •25. Организация проектирования программного обеспечения. Этапы процесса проектирования информационных систем в экономике.
- •26. Понятие информационного бизнеса. Информационные и коммуникационные технологии. Информационная индустрия и информационные рынки.
- •27. Критерии оценки информационного бизнеса. Особенности ценообразования программных продуктов. Рыночная практика установления на информационные продукты и услуги.
- •28. Оценка экономической эффективности внедрения информационных продуктов и услуг. Модель денежных потоков проекта развития информационной системы.
- •29. Itil/itsm как типовая модель, бизнес-процессов информационной службы. Управления сервисами ит.
- •30. Совокупная стоимость владения ит-инфраструктуры предприятия. Функционально-стоимостная модель сервиса ит.
- •31. Модель функционально-стоимостного анализа и бизнес процессы предприятия.
- •32. Правонарушения в информационной сфере: виды, способы регулирования. Наказания, предусмотренные гражданским, административным, трудовым и уголовным кодексами рф.
- •Блок №2 Экономика, бухгалтерский учет, анализ, аудит, финансы, налогообложение.
- •1. Производительность труда. Показатели производительности труда и трудоемкости продукции. Анализ трудоемкости производственной программы по технико-экономическим факторам.
- •2. Оборотные средства в машиностроительной промышленности, их состав, нормирование и показатели использования.
- •3. Анализ прибыли от реализации товарной продукции.
- •4. Показатели рентабельности и доходности. Анализ рентабельности продукции.
- •5. Методы и формы планирования производства продукции.
- •6. Анализ финансового состояния предприятия.
- •7. Себестоимость продукции: понятие, структура, классификация затрат.
- •8. Основные виды ценных бумаг. Курсовая стоимость ценных бумаг. Рынок ценных бумаг. Фондовая биржа.
- •9. Организация нормирования труда на предприятии. Трудовые нормы и нормативы, методы их разработки.
- •10. Современная банковская система. Банки и их функции. Роль Центрального банка в банковской системе, регулирование с его стороны деятельности коммерческих банков.
- •11. Ценовая политика фирмы; методы формирования исходной цены и обоснование их выбора.
- •12. Долгосрочный анализ доходов и затрат при принятии решения об эффективности
- •13. Типовые организационные структуры управления предприятием, методы проектирования организационной структуры управления.
- •14. Целевая и функциональная система управления предприятием. Промышленной фирмы.
- •15. Типы организации производства и экономически целесообразные границы применения.
- •16. Показатели организационно-технического уровня производства, их характеристика и анализ.
- •18. Классификация рынков; сегментация; критерии классификации рыночных сегментов.
- •19. Оценка кадрового потенциала предприятия и его подразделений.
- •20. Планирование потребности в трудовых ресурсах.
- •21. Производственные возможности общества. Кривая производственных возможностей.
- •22. Основные черты рыночной экономики. Функции рынка.
- •23. Экономические функции государства в рыночной экономике. Инструменты государственного регулирования.
- •24. Государственный бюджет. Бюджетный дефицит. Государственный долг.
- •25. Фискальная политика государства. Налоговая система.
- •26. Денежно-кредитная политика государства.
- •27. Экономический рост: показатели, темпы, факторы.
- •28. Сущность и виды инфляции. Антиинфляционная политика государства.
- •29. Экономическое обоснование затрат на охрану окружающей среды и охрану труда.
- •30. Виды затрат и особенности их отображения в бухгалтерском и налоговом учете.
- •31. Налогообложение: объекты и субъекты, ставки, формы и периоды отчетности.
- •32. Монополии: классификация, характеристика, особенности. Антимонопольная политика государства.
- •Блок №3 Теория вероятности и математическая статистика, математические методы в экономике.
- •1. Основные понятия алгебры множеств. Законы алгебраических множеств. Примеры.
- •2. Основные понятия отношений, графическое представление, свойства отношений.
- •3. Линейная алгебра. Матрица и определители, решение системы линейных алгебраических уравнений.
- •4. Дифференциальное исчисление производной функции, геометрический смысл производной.
- •5. Математическое программирование в экономике. Нелинейное программирование. Динамическое программирование.
- •6. Математические модели макроэкономики. Модель затраты выпуск. Прямые и косвенные затраты.
- •7. Интегральное исчисление. Определенные и неопределенные интегралы. Теорема Ньютона-Лейбница.
- •8. Применение и виды имитационного моделирования.
- •9. Алгебра логики, основные определения, аксиомы, логические операции и их свойства.
- •10. Численные методы, решение систем линейных уравнений. Интерполирование и приближенные вычисления функций.
- •Типы конечных графов
- •Части графов
- •12. Метод решения задачи оптимального управления. Задачи оптимального управления и двойственные (сопряженные) к ним.
- •14. Численные методы, численное интегрирование, численное решение систем нелинейных уравнений.
- •15. Численное решение обыкновенных дифференциальных уравнений.
- •21. Математическая модель межотраслевого баланса. Балансовый метод. Распределение продукции. Структура стоимости: перенесенная на продукт стоимость, вновь созданная стоимость.
- •Дифференциальные уравнения первого порядка.
- •23. Дифференциальные уравнения в частных производных. Классификация. Решение дифференциальных уравнений в частных производных. Примеры.
- •25. Вероятностные основы теории информации. Понятие энтропии. Энтропия случайной величины. Условная и средняя энтропия. Информация и ее измерение.
- •26. Закон распределения случайной величины. Понятие и методика определения статистической функции и статистической плотности распределения. Виды статистических оценок и предъявляемые к ним требования.
- •27. Статистическая проверка гипотез: сущность методов, основные понятия и определения. Примеры решения задач.
- •28. Основные понятия теории вероятностей: случайные события, величины, характеристики и функции.
- •29. Применение алгебры логики при разработке канонических задач.
- •30. Сущность транспортной задачи линейного программирования.
- •31. Сущность симплексного метода решения задач линейного программирования.
5. Математическое программирование в экономике. Нелинейное программирование. Динамическое программирование.
Ответ:
Математическое программирование – это наука, занимающаяся разработкой и практическим применением методов наиболее эффективного (или оптимального) управления организационными системами (предприятия, фирмы, банки и др.). Цель математического программирования – изучение и анализ систем организационного управления, отыскание в них оптимизационных задач, постановка и внедрение которых могут оправдать затраты на создание автоматических систем управления в условиях, когда имеют место ограничения технико-экономического или какого-либо другого характера. Таким образом, предмет математического программирования – это системы организационного управления (организации), которые состоят из большого числа взаимодействующих между собой подразделений, причем интересы подразделений не всегда согласуются между собой и могут быть противоположными. Одной из существенных особенностей математического программирования является стремление найти оптимальное решение поставленной задачи, количественно обосновывающее принимаемые решения по управлению организациями. Оптимальным решением считается такой способ действия, который в наибольшей степени способствует достижению поставленной в задаче цели. Несмотря на широкий спектр экономических задач, решаемых средствами математического программирования, существует сложившаяся в практике последовательность основных этапов их решения. Основные этапы решения экономических задач: идентификация проблемы (или постановка задачи); построение модели; решение поставленной задачи с помощью модели; проверка адекватности модели; реализация результатов исследования. Рассмотрим каждый из этапов подробнее. Постановка задачи. В начале нужно осознать задачу, четко сформулировать ее. При этом определяются объекты, которые относятся к решаемой задаче, а также ситуация, реализуемая в результате ее решения. Первоначально задачу формулируют с точки зрения заказчика. Такая постановка задачи обычно не бывает окончательной. Во время анализа исследуемой системы задача постепенно уточняется. Построение модели. Для того, чтобы задачу можно было описать количественно и использовать при ее решении вычислительную технику, нужно произвести качественный и количественный анализ объектов и ситуаций, имеющих к ней отношение. При этом сложные объекты, разбиваются на части (элементы), определяются связи этих элементов, их свойства, количественные и качественные значения свойств, количественные и логические соотношения между ними, выражаемые в виде уравнений, неравенств и т.п. Получив достаточно строгую и логически непротиворечивую, содержательную постановку задачи, нужно построить ее математическую модель. Математическая модель – это формальное отражение существующих взаимосвязей изучаемого объекта с сохранением основных функциональных характеристик. При этом необходимо учитывать особенности задачи. На этом этапе необходимо выбрать модель, наиболее подходящую для адекватного описания исследуемого объекта или процесса. При построении такой модели должны быть установлены количественные соотношения для выражения целевой функции (или критерия) и ограничений в виде функций от управляемых переменных. Управляемыми переменными называются такие характеристики исследуемого объекта, значениями которых можно варьировать. Переменные, изменение значений которых не зависит от решений субъекта управления, называются неуправляемыми переменными. В самом общем виде математическая модель может быть представлена следующим образом: максимизировать Е=f(x,y) (1.1) (или минимизировать) при ограничениях gi(x,y)Rbi , i = 1,…,m (1.2) где R – отношение вида ≤, =, ≥; Е = f(x,y)- целевая функция (технико-экономический показатель качества или эффективности функционирования изучаемого процесса или явления) модели; x - вектор управляемых переменных; y - вектор неуправляемых переменных; gi – функция потребления iго ресурса (иногда соотношение спроса-предложения), bi - величина – iго ресурса. 3. Решение поставленной задачи. Для нахождения оптимального решения задачи (1.1) – (1.2) в зависимости от вида структуры и свойств целевой функции и функций системы ограничений используют те или иные методы теории оптимальных решений – методы математического программирования. Математическое программирование представляет собой дисциплину, занимающуюся изучением экстремальных задач и разработкой методов их решения. В зависимости от свойств функций f и gi математическое программирование можно рассматривать как ряд самостоятельных дисциплин, занимающихся изучением и разработкой методов решения определенных классов задач, основными из которых являются: задачи линейного программирования; задачи нелинейного программирования; задачи целочисленного программирования; задачи параметрического программирования; задачи дробно-линейного программирования; задачи стохастического программирования; задачи динамического программирования; эвристическое программирование. Реальные экономические процессы весьма сложны. При их математическом описании приходится учитывать множество различных факторов. Поэтому математическая модель содержит большое число ограничительных условий со многими неизвестными. Если неизвестные входят в модель только в первой степени, то задача относится к разделу линейного программирования, в противном случае — к разделу нелинейного программирования. Кроме того при решении многих задач на искомые переменные по их физическому смыслу (и/или экономическому) необходимо наложить дополнительные ограничения целочисленности. Это имеет место, например, когда искомыми величинами являются неделимые объекты (машины, комплекты оборудования и т.п.). В этом случае к обычной формулировке задачи необходимо добавить условие целочисленности переменных, и мы получим задачу целочисленного программирования. Она может быть как линейной, так и нелинейной. Во многих задачах математического программирования исходные данные зависят от некоторого параметра. Такие задачи называются задачами параметрического программирования. В большинстве инженерных задач построение математической модели не удается свести к задаче линейного программирования. Математические модели в задачах проектирования реальных объектов или технологических процессов должны отражать реальные протекающие в них физические и, как правило, нелинейные процессы. Переменные этих объектов или процессов связанны между собой физическими нелинейными законами, такими, как законы сохранения массы или энергии. Они ограничены предельными диапазонами, обеспечивающими физическую реализуемость данного объекта или процесса. В результате, большинство задач математического программирования, которые встречаются в научно-исследовательских проектах и в задачах проектирования –это задачи нелинейного программирования (НП). В данной работе будет рассматриваться такой метод решения задач НП, как метод множителей Лагранжа. Метод множителей Лагранжа позволяет отыскивать максимум (или минимум) функции при ограничениях-равенствах. Основная идея метода состоит в переходе от задачи на условный экстремум к задаче отыскания безусловного экстремума некоторой построенной функции Лагранжа. 4. Динамическое программирование Динамическое программирование представляет собой математические аппарат, позволяющий быстро находить оптимальное решение в случаях, когда анализируемая ситуация не содержит факторов неопределенности, но имеется большое количество вариантов поведения, приносящих различные результаты, среди которых необходимо выбрать наилучший. Динамическое программирование подходит к решению некоторого класса задач путем разложения на части, небольшие и менее сложные задачи. В принципе, задачи такого рода могут быть решены путем перебора всех возможных вариантов и выбора среди них наилучшего, однако часто такой перебор весьма затруднен. В этих случаях процесс принятия оптимального решения может быть разбит на шаги (этапы) и исследован с помощью метода динамического программирования. Решение задач методами динамического программирования проводится на основе сформулированного Р.Э.Беллманом принципа оптимальности: оптимальное поведение обладает тем свойством, что каким бы ни было первоначальное состояние системы и первоначальное решение, последующее решение должно определять оптимальное поведение относительно состояния, полученного в результате первоначального решения. Таким образом, планирование каждого шага должно проводится с учетом общей выгоды, получаемой по завершении всего процесса, что и позволяет оптимизировать конечный результат по выбранному критерию. Вместе с тем динамическое программирование не является универсальным методом решения. Практически каждая задача, решаемая этим методом, характеризуется своими особенностями и требует проведения поиска наиболее приемлемой совокупности методов для ее решения. Кроме того, большие объемы и трудоемкость решения многошаговых задач, имеющих множество состояний, приводят к необходимости отбора задач малой размерности либо использования сжатой информации. Динамическое программирование применяется для решения таких задач, как: распределение дефицитных капитальных вложений между новыми направлениями их использования; разработка правил управления спросом и запасами; составление календарных планов текущего и капитального ремонтов оборудования и его замены; поиск кратчайших расстояний на транспортной сети и т.д. Пусть процесс оптимизации разбит на n шагов. На каждом шаге необходимо определить два типа переменных –переменную состояния S и переменную управления X. Переменная S определяет, в каких состояниях может оказаться система на данном k-м шаге. В зависимости от S на этом шаге можно применить некоторые управления, которые характеризуются переменной X. Применение управления X на k-м шаге приносит некоторый результат Wk(S,Xk) и переводит систему в некоторое новое состояние S'(S,Xk). Для каждого возможного состояния на k-м шаге среди всех возможных управлений выбирается оптимальное управление X*k такое, чтобы результат, который достигается за шаги с k-го по n-й, оказался оптимальным. Числовая характеристика этого результата называется функцией Беллмана Fk(S) и зависит от номера шага k и состояния системы S. Все решения задачи разбиваются на два этапа. На первом этапе, который называют условной оптимизацией, отыскиваются функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего. После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n-го по первый, производится второй этап решения задачи, который называется безусловной оптимизацией. В общем виде задача динамического программирования формулируется следующим образом: требуется определить такое управление X*, переводящее систему из начального состояния S0 в конечное состояние Sn, при котором целевая функция F(S0,X*) принимает наибольшее (наименьшее) значение. Особенности математической модели динамического программирования заключаются в следующем: задача оптимизации формулируется как конечный многошаговый процесс управления; целевая функция является аддитивной и равна сумме целевых функций каждого шага ; выбор управления Xk на каждом шаге зависит только от состояния системы к этому шагу Sk-1 и не влияет на предшествующие шаги (нет обратной связи); состояние системы Sk после каждого шага управления зависит только от предшествующего состояния системы Sk-1 и этого управляющего воздействия Xk (отсутствие последействия) и может быть записано в виде уравнения состояния: ; на каждом шаге управление Xk зависит от конечного числа управляющих переменных, а состояние системы Sk зависит от конечного числа переменных; оптимальное управление X* представляет собой вектор, определяемый последовательностью оптимальных пошаговых управлений: X*=(X*1, X*2, …, X*k, …, X*n), число которых и определяет количество шагов задачи. Условная оптимизация. Как уже отмечалось выше, на данном этапе отыскиваются функция Беллмана и оптимальные управления для всех возможных состояний на каждом шаге, начиная с последнего в соответствии с алгоритмом обратной прогонки. На последнем n-м шаге найти оптимальное управление X*n и значение функции Беллмана Fn(S) не сложно, так как Fn(S)=max{Wn(S,Xn)}, где максимум ищется по всем возможным значениям Xn. Дальнейшие вычисления производятся согласно рекуррентному соотношению, связывающему функцию Беллмана на каждом шаге с этой же функцией, но вычисленной на предыдущем шаге: Fk(S)=max{Wk(S,Xk)+Fk+1(S'(S,Xk))}. (1) Этот максимум (или минимум) определяется по всем возможным для k и S значениям переменной управления X. Безусловная оптимизация. После того, как функция Беллмана и соответствующие оптимальные управления найдены для всех шагов с n-го по первый (на первом шаге k=1 состояние системы равно ее начальному состоянию S0), осуществляется второй этап решения задачи. Находится оптимальное управление на первом шаге X1, применение которого приведет систему в состояние S1(S,x1*), зная которое можно, пользуясь результатами условной оптимизации, найти оптимальное управление на втором шаге, и так далее до последнего n-го шага.
