Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Высшмат v2.0.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.07 Mб
Скачать

23.Модуль вектора. Длина вектора.

Определение длины вектора

Определение.

 Длина направленного отрезка определяет числовое значение вектора и называется длиной вектора или модулем вектора AB.

Для обозначения длины вектора используются две вертикальные линии слева и справа |AB|.

Основное соотношение. Длина вектора |a| в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат.

Формулы длины вектора

Формула длины вектора для плоских задач

В случае плоской задачи модуль вектора a = {ax ; ay} можно найти воспользовавшись следующей формулой:

|a| = √ax2 + ay2

Формула длины вектора для пространственных задач

В случае пространственной задачи модуль вектора a = {ax ; ay ; az} можно найти воспользовавшись следующей формулой:

|a| = √ax2 + ay2 + az2

Формула длины n -мерного вектора

В случае n-мерного пространства модуль вектора a = {a1 ; a2; ... ; an} можно найти воспользовавшись следующей формулой:

|a| = (

n

ai2)1/2

Σ

i=1

Примеры задач на вычисление длины вектора

Примеры вычисления длины вектора для плоских задачи

Пример 1. Найти длину вектора a = {2; 4}.

Решение: |a| = √22 + 42 = √4 + 16 = √20 = 2√5.

Пример 2. Найти длину вектора a = {3; -4}.

Решение: |a| = √32 + (-4)2 = √9 + 16 = √25 = 5.

Примеры вычисления длины вектора для пространственных задачи

Пример 3. Найти длину вектора a = {2; 4; 4}.

Решение: |a| = √22 + 42 + 42 = √4 + 16 + 16 = √36 = 6.

Пример 4. Найти длину вектора a = {-1; 0; -3}.

Решение: |a| = √(-1)2 + 02 + (-3)2 = √1 + 0 + 9 = √10.

Примеры вычисления длины вектора для пространств с размерностью большей 3

Пример 5. Найти длину вектора a = {1; -3; 3; -1}.

Решение: |a| = √12 + (-3)2 + 32 + (-1)2 = √1 + 9 + 9 + 1 = √20 = 2√5

Пример 6. Найти длину вектора a = {2; 4; 4; 6 ; 2}.

Решение: |a| = √22 + 42 + 42 + 62 + 22 = √4 + 16 + 16 + 36 + 4 = √76 = 2√19.

Угол между векторами.

Определение. Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором.

Основное соотношение. Косинус угла между векторами равен скалярному произведению векторов, поделенному на произведение модулей векторов.

Формула вычисления угла между векторами

cos α = 

a·b

|a|·|b|

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Пример 1. Найти угол между векторами a = {3; 4} и b = {4; 3}.

Решение: Найдем скалярное произведение векторов:

a·b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

|a| = √32 + 42 = √9 + 16 = √25 = 5 |b| = √42 + 32 = √16 + 9 = √25 = 5

Найдем угол между векторами:

cos α = 

a · b

 = 

24

 = 

24

 = 0.96

|a| · |b|

5 · 5

25

Пример 2. Найти угол между векторами a = {7; 1} и b = {5; 5}.

Решение: Найдем скалярное произведение векторов:

a·b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

|a| = √72 + 12 = √49 + 1 = √50 = 5√2 |b| = √52 + 52 = √25 + 25 = √50 = 5√2

Найдем угол между векторами:

cos α = 

a · b

 = 

40

 = 

40

 = 

4

 = 0.8

|a| · |b|

5√2 · 5√2

50

5