Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на вопросы (математика) (2).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
535.98 Кб
Скачать

Свойства функций непрерывных на отрезке:

  1. Теорема Вейерштрасса. Если функция непрерывна на отрезке, то она достигает на этом отрезке свои наибольшее и наименьшее значения.

  2. Непрерывная на отрезке   функция является ограниченной на этом отрезке.

  3. Теорема Больцано-Коши. Если функция   является непрерывной на отрезке   и принимает на концах этого отрезка неравные между собой значения, то есть  , то на этом отрезке функция принимает и все промежуточные значения между   и   .

  4. Если функция  , которая непрерывна на некотором отрезке  , принимает на концах отрезка значения разных знаков, то существует такая точка   такая, что   .

  1. Определение производной.

Производная функции − одно из основных понятий математики, а в математическом анализе производная наряду с интегралом занимает центральное место. Процесс нахождения производной называется дифференцированием. Обратная операция − восстановление функции по известной производной − называется интегрированием. 

Производная функции в некоторой точке характеризует скорость изменения функции в этой точке. Оценку скорости изменения можно получить, вычислив отношение изменения функции Δy к соответствующему изменению аргумента Δx. В определении производной такое отношение рассматривается в пределе при условии Δx→0.

Определение производной

Рассмотрим функцию f(x), область определения которой содержит некоторый открытый интервал вокруг точки x0. Тогда функция f(x) является дифференцируемой в точке x0, и ее производная определяется формулой

Для производной используются обозначения:

Для нахождения производной функции f(x) в точке x0 на основе определения следует выполнить следующие действия:

  • Записать отношение 

  • Упростить дробь, сократив ее, если возможно, на Δx;

  • Найти производную f′(x0), вычисляя предел полученного выражения. Если данный предел существует, то говорят, что функция f(x) дифференцируема в точке x0.

  1. Геометрический, физический и экономический смысл производной.

Г еометрический смысл производной. Производная в точке x0 равна угловому коэффициенту касательной к графику функции  y=f(x) в этой точке

Уравнение касательной к графику функции y=f(x) в точке x0 :

Физический смысл производной.

Если точка движется вдоль оси х и ее координата изменяется по закону  x(t), то мгновенная скорость точки:

Экономический смысл производной: производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора.

  1. Правила дифференциация.

Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

1) (с) ' = 0, (cu) ' = cu';

2) (u+v)' = u'+v';

3) ( uv )' = u'v+v'u;

4) (u/v)' = (u'v-v'u)/v 2;

5) если y = f(u), u = j (x), т.е. y = f( j (x)) - сложная функция, или суперпозиция, составленная из дифференцируемых функций j и f, то , или

 ;

6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем     ¹ 0, то  .