- •Предел функции в точке.
- •Предел функции на бесконечности.
- •Односторонние пределы.
- •Теоремы о пределах. Виды неопределённостей.
- •Тогда: , т. Е. . Теорема означает, что в неравенстве можно переходить к пределам, сохраняя знак неравенства.
- •Теорема №4: (арифметические операции над переменными, имеющими предел). Пусть существуют пределы: и , тогда существуют пределы переменных: 1. 2. 3.
- •Пусть переменная имеет конечный предел α, тогда эта переменная является ограниченной переменной, что означает, что при всех n имеет место неравенство , где m и m – некоторые постоянные числа.
- •1 Замечательный предел и его следствия.
- •2 Замечательный предел и его следствия
- •Сравнение бесконечно малых функций. Список эквивалентных малых функций.
- •Если β(X) – бесконечно малая более высокого порядка по сравнению с α(X) при то
- •Асимптоты
- •Непрерывность функции. Свойства функции не прерывной на отрезке.
- •Свойства функций непрерывных на отрезке:
- •Определение производной.
- •Геометрический, физический и экономический смысл производной.
- •Правила дифференциация.
- •Производная обратной и сложной функции.
- •Производные элементарных функций.
- •Правило Лопиталя.
- •Использование производной для исследования функции на монотонность и экстремум. Исследование функции на возрастание и убывание (монотонность).
- •Исследование функции на экстремум с помощью производной
- •Использование производной для исследования функции на выпуклость и точки перегиба графика функции.
- •Дифференциал функции. Геометрический смысл дифференциала.
- •Функция двух переменных. Область определения функции.
- •Частные производные первого и второго порядка. Смешанная производная второго порядка
- •Исследование функции двух переменных на экстремум.
- •Линия уровня функции двух переменных и вектор-градиента.
- •Метод наименьших квадратов. Постановка задачи.
- •Первообразная, неопределённый интеграл. Определения.
- •Основная таблица интегралов.
- •Дополнительная таблица интегралов.
- •Функция Гаусса. Ее основные свойства и графики.
Предел функции в точке.
Определение предела функции в точке по Коши. Число b называется пределом функции у = f(x) при х, стремящемся к а (или в точке а), если для любого положительного числа e существует такое положительное число d, что при всех х ≠ а, таких, что |x – a | < d, выполняется неравенство | f(x) – a | < e .
Определение предела функции в точке по Гейне. Число b называется пределом функции у = f(x) при х, стремящемся к а (или в точке а), если для любой последовательности {xn}, сходящейся к а (стремящейся к а, имеющей пределом число а), причем ни при каком значении n хn ≠ а, последовательность {yn = f(xn)} сходится к b.
Определения предела функции в точке по Коши и по Гейне эквивалентны: если число b служит пределом по одному из них, то это верно и по второму.Указанный предел обозначается так:
Геометрически существование предела функции в точке по Коши означает, что для любого числа e > 0 можно указать на координатной плоскости такой прямоугольник с основанием 2d > 0, высотой 2e и центром в точке (а; b), что все точки графика данной функции на интервале (а– d; а + d), за исключением, быть может, точки М(а; f(а)), лежат в этом прямоугольнике – см. рис.:
Предел функции на бесконечности.
Пусть задана функция у = f(x) с неограниченной сверху областью определения. Число b называется пределом данной функции при х, стремящемся к плюс бесконечности, если для любого числа существует такое положительное число М, что при всех значениях аргумента х из области определения, таких, что x > M, выполняется неравенство |f(x) – b| < e. Запись этого факта:
Если область определения данной функции неограниченна снизу, то число b называется пределом данной функции при х, стремящемся к минус бесконечности, если для любого числа e < 0 существует такое положительное число М, что при всех значениях аргумента х из области определения, таких, что x < –M, выполняется неравенство |f(x) – b| < e. Записывается это так:
Односторонние пределы.
Односторонний предел — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левым и правым пределами.
Число
называется правым
пределом функции
в
точке
,
если для
такое,
что для любого
и
,
выполняется неравенство
(рис.
1). Правый предел обозначается
Число называется левым пределом функции в точке , если для
такое,
что для любого
и
,
выполняется неравенство
(рис.
2). Левый предел обозначается
Левый и правый пределы функции называются односторонними пределами.
Теорема:
Если существуют
и
,
причем
,
то существует и
.
Обратное утверждение также верно.
В
случае, если
,
то предел
не
существует.
Теоремы о пределах. Виды неопределённостей.
ТЕОРЕМА №1: (о единственности предела) Если переменная Хn имеет предел, то этот предел единственный. Доказательство: От противного: Предположим, что Хn имеет α различных пределов.
По
лемме №1 о б.м. имеют места 2 равенства:
Вычтем почленно из одного неравенства другое:
Это равенство противоречиво, т.к. слева постоянное число неравное нулю, а справа, стремящаяся к нулю. Постоянное число не может стремиться к нулю. Противоречие доказывает теорему.
ТЕОРЕМА
№2: (о предельном переходе в
неравенстве.).Пусть
при всех n выполняется неравенство
,и
переменные
и
имеют пределы:
;
