- •1.Напишите определение автокорреляционной функции сигнала s(t ).
- •1.1. Автокорреляционные и взаимно-корреляционные функции фазоманипулированных сигналов
- •1.6. Бинарная фазовая модуляция
- •11. Кодовые последовательности Уолша, их формирование. Матрицы Адамара. Применение последовательностей Уолша в системах связи
- •13. Корреляционный приём широкополосных сигналов с dsss. Разделение сигналов от разных абонентов в системах с cdma.
- •Преимущества
- •Эволюция систем сотовой связи, использующих технологию cdma
- •14. Постройте матрицу Адамара h8 . Какова будет база сигнала, расширенного последовательностью Уолша, полученной на основе матрицы Адамара h8 ?
- •17. Физические причины возникновения замираний в радиоканалах систем связи с подвижными объектами. Виды замираний. Замирания сигнала
- •Замирания сигналов
- •18. Виды многолучевых каналов распространения сигналов. Каналы Райса и Рэлея. Их характеристики и различия
- •19. Доплеровское расширение спектра – причины, механизм возникновения. Способы борьбы с негативным эффектом доплеровского расширения спектра в системах с ofdm.
- •Основные проблемы развития современных и перспективных систем мобильной связи и радиодоступа и пути их решения (cdma, ofdm, mimo, кр). Проблема ближней-дальней зоны
- •2.Технология cdma. Формирование и приём широкополосных сигналов с dsss.
- •3.Технология ofdm. Формирование и приём сигнала ofdm. Защитный интервал, префикс, структура кадра. Использование ofdm в системах радиодоступа
- •Циклический префикс
- •4. Технология мс cdma. Формирование и приём сигнала мс cdma. Преимущества использования мс cdma в мобильной сотовой связи
- •5. Mimo-системы, условия эффективности. Сопоставление с другими методами уплотнения. Принципы построения систем с пространственно–временным кодированием
- •6. Многоантенные радиолинии передачи информации. Разнесённая передача по схеме Аламоути
- •7. Многоантенные радиолинии передачи информации. Разнесённый приём и оптимальное сложение сигналов
- •8. Многоантенные радиолинии передачи информации. Пространственное мультиплексирование.
Циклический префикс
Наверх
Одним из главных преимуществ метода OFDM является его устойчивость к эффекту многолучевого распространения. Для того чтобы избежать межсимвольных искажений, перед каждым OFDM-символом вводится защитный интервал, называемый циклическим префиксом. Циклический префикс представляет собой копию фрагмента полезного сигнала, таким образом некоторый фрагмент начала символа OFDM такой же, как и в конце символа. Это гарантирует сохранение ортогональности поднесущих (но только в том случае, если отраженный сигнал при многолучевом распространении задержан не больше, чем на длительность циклического префикса). Кроме того, циклический префикс позволяет выбрать окно для преобразования Фурье в любом месте временного интервала символа (рисунок 4).
Рисунок 4. Циклический префикс.
Структура кадра OFDM. При выборе структуры кадра необходимо обеспечить, во-первых, быстрое вхождение в синхронизм демодулятора цифрового телевизора, с тем чтобы не вызвать чувства раздражения у телезрителей в моменты переключения телевизора с одной программы на другую. Во-вторых, формат кадра OFDM должен быть согласован с форматом транспортного пакета MPEG-2 (длительность пакета 204 байта), с тем чтобы взаимные преобразования этих форматов в модеме могли быть выполнены простыми техническими средствами.
В результате учета этих требований в стандарте OFDM была принята двухступенчатая структура передачи данных в виде супер-кадра, состоящего из 4 кадров OFDM. При этом в одном супер-кадре содержится целое число транспортных пакетов MPEG-2, что позволяет производить взаимные преобразования форматов транспортных пакетов и супер-кадра OFDM без введения в модем OFDM стаффинг-синхронизации. В то же время наличие в супер-кадре 4 кадров повышает в 4 раза скорость передачи сигналов синхронизации, за счет чего обеспечивается приемлемое время вхождения в синхронизм демодулятора телевизора.
Для работы приемного устройства необходимо совместно с информационными символами передавать опорные сигналы, во-первых, сигналы для фазовой автоподстройки опорных частот демодулятора, во-вторых, — сигналы тактовой синхронизации функциональных блоков демодулятора, в-третьих, — сигналы для оценки состояния эфирного радиоканала, в-четвертых, — сигналы управления демодулятором, содержащие информацию о используемых режимах модуляции. Для этих целей в каждом символе OFDM для режимов модуляции 8К и 2К выделено, соответственно, 769 и 193 опорных несущих, которые по сравнению с информационными несущими передаются с повышенной на 2,5 дБ мощностью. Для фазовой автоподстройки опорной сетки когерентных частот демодулятора [8] используются так называемые фиксированные опорные несущие, частотные позиции которых в каждом символе OFDM постоянны.
|

Структура
кадра OFDM показана на рис. 7. Кадр состоит
из 68 символов OFDM, которым присвоены
номера от 0 до 67. Длительность кадра
равна TF=68TS , а значения TS (длительности
информационных символов) для различных
режимов работы приведены в табл.1. Кадр
содержит для режимов модуляций 8К и
2К, соответственно, 6817 и 1705 несущих.
Всего
для этой цели в режимах 8К и 2К используется
соответственно 177 и 45 фиксированных
несущих. Номера выделенных для этих
целей несущих заданы в виде таблицы
[3], в которой первый и последний номер
совпадает со значениями Кmin и Кmax (рис.
7). Фиксированные несущие модулируются
опорной псевдослучайной последовательностью.