- •Механика
- •Учебно-методическое пособие
- •Длястудентовзаочнойформыобученияи дистанционногообразования
- •Оглавление
- •Математическое введение Чернобородова с.В.
- •Глава 1 кинематика материальной точки Зольников п.П.
- •Глава 2динамика материальной точки Зольников п.П.
- •Глава 3 работа и энергия законы сохранения Першин в.К.
- •Глава 4 момент импульса Фишбейн л.А.
- •Глава 5 элементы механики твердого тела Фишбейн л.А.
- •Глава 6 механические колебания и волны
- •Введение
- •Векторнаяалгебра
- •Сложениевекторов
- •Умножение вектора начисло
- •Вычитаниевекторов
- •Координатывектора
- •Длинавектора
- •Углымеждуосямикоординативектором
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2
- •Задача 1.3
- •Задача 1.4
- •Задача 1.5
- •Задача 1.6
- •Скалярное произведение двухвекторов
- •Физический смысл скалярногопроизведения
- •Задача 1.13 � �
- •Векторное произведение двухвекторов
- •Выражение векторногопроизведения через координатысомножителей
- •Физический смысл векторногопроизведения
- •Вопросы и задания для самопроверки
- •Дифференциальное исчислениефункции действительнойпеременной
- •Дифференцируемость функции.Дифференциал. Производнаяфункции
- •Геометрический смыслпроизводной
- •Геометрический смыслдифференциала
- •Физический смыслпроизводной
- •Производные сложныхфункций
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2
- •Задача 2.3
- •Интегральноеисчисление
- •Первообразнаяфункция
- •Неопределенныйинтеграл
- •Определенныйинтеграл
- •Геометрический смысл определенногоинтеграла
- •Физический смыслинтеграла
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.2
- •4. Дифференциальные уравнения
- •Дифференциальное уравнение, его порядок.Общееичастноерешениедифференциальногоуравнения
- •Дифференциальные уравнения с разделяющимисяпеременными
- •Как нашли решение уравнениямеханических незатухающихколебаний
- •Линейные однородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Линейные неоднородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Задача 4.5
- •Вопросы для самопроверки
- •Тесты математические для электронного экзамена Сложение и вычитание векторов
- •Векторное произведение
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Задачи для контрольных работ Сложение и вычитание векторов, длина вектора
- •Скалярное и векторное произведение векторов
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Глава 1кинематика материальной точки
- •Системаотсчета
- •Траектория, путь,перемещение
- •Вопросы и задания для самопроверки
- •Скорость
- •Ускорение
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2.
- •Задача 1.3.
- •Кинематика равномерного прямолинейного движения
- •Кинематикаравнопеременного прямолинейногодвижения
- •Кинематика равнопеременногодвижения
- •Кинематика равномерного вращательногодвижения
- •Примеры решения задач
- •Задача 1.5.
- •Задача 1.6.
- •Задача 1.7.
- •Вопросы и задания для самопроверки
- •Основные положения
- •Мгновеннаяскорость � �
- •Касательное (тангенциальное)ускорение
- •Нормальноеускорение � � �
- •Тесты � � � для электронного экзамена
- •Задачи для контрольных работ
- •Глава 2 динамика материальной точки
- •Первый закон ньютона.Инерциальные системыотсчета
- •Сила, масса, импульстела
- •Второй законньютона
- •Уравнение движения материальнойточки
- •Третий законньютона
- •Вопросы и задания для самопроверки
- •Принцип относительностигалилея. Неинерциальные системыотсчета
- •Вопросы и задания для самопроверки
- •Силы вмеханике
- •Силы гравитационноговзаимодействия
- •Силытрения
- •Сила сопротивлениясреды
- •Силаупругости
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2.
- •Задача 2.3.
- •Задача2.4
- •Задача 2.6
- •Задача 2.7
- •Задача 2.8
- •Задача 2.9
- •Задача 2.10
- •Задача 2.11
- •Задача 2.12
- •Основные положения
- •Обозначения, используемые в главе 2
- •Тесты для электронного экзамена
- •Задачи для контрольных работ
- •Глава 3 работа и энергия.Законы сохранения
- •3.1. Основные понятия и определения
- •Работасилы.Мощность
- •Работа постоянной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Α α Задача 3.2
- •Задача 3.3
- •Работа переменной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.5
- •Задача 3.6
- •Кинетическаяэнергия
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.8
- •Потенциальнаяэнергия
- •Потенциальная энергия гравитационного взаимодействия двух тел
- •Потенциальная энергия идеальной деформированной пружиныи закрепленного на нейтела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Законы сохранения и измененияэнергии Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.11
- •Задача 3.12
- •Задача 3.13
- •Задача 3.14
- •Закон сохранения и измененияимпульса Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Столкновениятел
- •Абсолютно неупругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.17
- •Абсолютно упругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.19
- •Задача 3.20
- •Задача 3.21
- •Задача 3.22
- •Законизменениямеханическойэнергиисистемы–изменение
- •Потенциальнаяэнергиятела,поднятогонадЗемлей–
- •И�мпульссилы–
- •Обозначения, используемые в главе 3
- •Тесты для электронного экзамена Работа постоянной силы
- •Работа переменной силы
- •Мощность силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Теорема об изменении кинетической энергии (импульс)
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Задачи для контрольных работ Работа постоянной силы
- •Работа переменной силы
- •Мощность
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Глава 4момент импульса.
- •P 4.1. Момент импульса частицы. Момент силы
- •Уравнениемоментов.
- •Уравнение моментов относительно оси. Закон сохранения момента импульсачастицы
- •Вопросы и задания для самопроверки
- •Задача 4.1
- •Примеры решениязадач
- •Движение Луны вокруг Земли
- •Движение электрона вокруг протона
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Момент импульса системычастиц. Закон сохранения момента импульса системы частиц относительно неподвижной (ых) точки и оси
- •12 21 FвнутFвнут,
- •12 21 12 12 � � � � FвнутFвнутFвнутFвнут0
- •12 21 MвнутMвнут0.
- •Вопросы и задания для самопроверки
- •Центр масс системычастиц
- •Прыжок кошки
- •Движение человека
- •Движение человека на лыжах, автомобиля по дороге, поезда по рельсам
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Абсолютно твердое тело.Равнодействующая сил, приложенных к твердомутелу.
- •1 Mравн f
- •Вопросы и задания для самопроверки
- •Задача 4.6
- •Примеры решениязадач
- •Способы определениякоординатцентра тяжести твердоготела
- •Симметрия
- •Разбиение
- •Задача 4.7
- •Дополнение
- •Задача4.8
- •Уравнение моментов
- •Момент импульса системы частиц
- •Центр масс системы частиц
- •Абсолютно твердое тело. Центр тяжести
- •Задачи для контрольных работ
- •Момент импульса частицы. Момент силы. Уравнение моментов
- •Центр масс системы частиц
- •Центр тяжести
- •Глава 5 элементы механики твердого тела
- •Динамика твердоготела
- •Условияравновесиятвердоготела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.2
- •Задача 5.3
- •Поступательное движение твердоготела
- •Вращение твердого тела вокруг неподвижнойоси. Момент инерции твердоготела. Теорема штейнера Дискретная система частиц
- •Непрерывная система частиц
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.5
- •Задача 5.6
- •Задача 5.7
- •Задача 5.8
- •Задача 5.9
- •Закон сохранения момента импульсасистемы твердых тел при их вращательномдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижнойоси.
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •5.7. Плоское движение твердого тела
- •Кинетическая энергия при плоскомдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Способ1
- •Способ2
- •Тесты для электронного экзамена Условия равновесия твердого тела
- •Момент инерции твердого тела. Теорема Штейнера
- •Закон сохранения момента импульса системы твердых тел
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси. Работа внешних сил при повороте твердого тела
- •Задачи для контрольных работ
- •Глава 6механические колебания и волны
- •Понятие колебательногодвижения
- •Кинематика механических гармоническихколебаний
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.2
- •Задача 6.3
- •Динамика механических гармоническихколебаний
- •Пружинныймаятник
- •Физическиймаятник
- •Математическиймаятник
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.5
- •Задача 6.6
- •Задача6.7
- •Задача 6.8
- •Сложение однонаправленныхколебаний одинаковойчастоты
- •Сложениедвухгармоническихколебанийодинаковойчастоты,происходящих вдоль однойпрямой
- •Сложение гармонических колебаний со слегка отличающимисячастотами, происходящими вдоль одной прямой
- •Сложение взаимно перпендикулярных гармоническихколебаний
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной нулю
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Затухающие механическиеколебания
- •Основные параметры, характеризующие затухающие колебания
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.12
- •Задача 6.13
- •Вынужденные механическиеколебания
- •Пояснение
- •Пояснение к искусственному преобразованию
- •Вопросы и задания для самоподготовки
- •Примеры решения задач
- •Задача 6.15
- •Механическиеволны
- •Общиесведенияомеханическихволнах
- •Видыволн
- •Уравнение плоской гармоническойволны
- •Интерференцияволн
- •Стоячиеволны
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.17
- •Задача 6.18
- •Задача 6.19
- •Задача 6.20
- •Задача 6.21
- •Задача 6.22
- •Основные положения Кинематика механических гармонических колебаний
- •Динамика механических гармонических колебаний
- •Кинетическаяипотенциальнаяэнергиипружинногомаятника–
- •Сложение гармонических колебаний
- •Затухающие механические колебания
- •Условныйпериод затухающих механических колебаний–
- •Вынужденные механические колебания
- •Механические волны
- •Разностьфазмеждудвумяточками–
- •Уравнениеплоской гармонической волны–
- •Координаты пучностей и узлов стоячей волны–
- •Обозначения, использованные в главе 6
- •Тесты для электронного экзамена Собственные незатухающие колебания
- •Пружинный маятник
- •Математический маятник
- •Физический маятник
- •Затухающие колебания
- •Вынужденные колебания
- •Механические волны
- •Задачи для контрольных работ Сложение колебаний
- •Собственные незатухающие колебания
- •Затухающие колебания
- •Вынужденные колебания. Резонанс
- •Механические волны
- •Указания к выполнению контрольной работы
- •Продолжение табл. № 1
- •Продолжение табл. № 2
- •Физика Механика
- •620034, Екатеринбург, ул. Колмогорова, 66
Вопросы и задания для самопроверки
Дайте определение векторного произведения двух векторов. В каком случае модуль векторного произведения двух векторов по- ложителен? Равеннулю?
Изменится ли направление и модуль векторного произведения двух векторов, если поменять местами перемножаемыевекторы?
Возможна ли ситуация, когда модули векторного и скалярно- го произведений одних и тех же векторов равны? Если ваш ответ ут- вердительный, приведитепример.
Дифференциальное исчислениефункции действительнойпеременной
Цель этого раздела — исследование поведения функцииy=y(x) в окрестности точки x.
Дифференцируемость функции.Дифференциал. Производнаяфункции
Функцияy=y(x)называетсядифференцируемойвточкеx,еслипри- ращение функцииΔyможно представить ввиде
Δy=АΔx+о(Δx), (2.1)
гдеАнезависитотΔx,ноприэтом зависитотx, ао(Δx)бес-конечно малая величина более высокого порядка,чемΔy,т.е.
lim⎛о(Δx)⎞0.
Δx0⎜⎝
Δx⎟⎠
Главная, линейнаяпоΔx, часть приращения функции называется
дифференциалом функциив точкеxи обозначается
dy=АΔx. (2.2)
НайдемА, учитывая, чтоАне должно зависеть отΔx; приэтомпусть приращениеΔxстремится к нулю.
А =Δyo(Δx); (2.3)
Δx Δx
limAA; (2.4)
Δx0
А =lim⎛Δyo(Δx)⎞limΔy. (2.5)
Δx0⎜⎝Δx
Δx⎟⎠
Δx0Δx
Производнойфункцииy=y(x)вточкеxназываетсяпределотноше-нияприращенияфункцииΔyкприращениюаргументаΔxпристрем-
лении последнего к нулюlimΔy(при условии, что он существует).
Принято обозначать
Δx0Δx
yyxlimΔylimyxΔxyx. (2.6)
Δx0Δx Δx0 Δx
Длядифференцируемости функциинеобходимо и достаточно суще-
ствование производнойyx. При этом
dy=
ydx. (2.7)
Поэтому процесс нахождения производной также называютдиф-ференцированием.
Геометрический смыслпроизводной
Как видно из рис. 2.1, тангенс угла наклона секущей АВ
tgBCΔyy(xΔx)y(x). (2.8)
AC Δx
Δx
ПриΔx0секущаяАВстре-мится
к положению касатель- нойАD;
тогда tg=y(x),
где
— угол наклона касательной к графику функции в точкеx.
Значениеyx0позволяет
записатьуравнение касательной
к кривойy=y(x) в точкеx0:
y–y0=yx0(x–x0), (2.9)
Рис. 2.1
а такжеуравнение нормали:
y–y0
=– 1
yx0
(x–x0),при
yx00 (2.10)
Приyx> 0 в точкеxфункция являетсявозрастающей, а при
yx<0 —убывающей.
Геометрический смыслдифференциала
Как было получено, приращение функции
Δy=dy+о(Δx). (2.11)
ПриΔx0,Δydy.
Таким образом, линейное приращение функции можно оцени- вать по дифференциалуdy.
Вернемся к рис. 2.1:Δy=ВС;о(Δx) =DВ;dy=DС.
Как видно,дифференциал функции графически изображается при-ращением ординаты касательной.
Физический смыслпроизводной
ПонятиепроизводнойвведеноГ.Лейбницем(Германия)и И.Нью- тоном(Великобритания)вконцеXVIIвекапрактическиодновремен- но. Лейбниц решал геометрическую задачу о проведении касатель- ной к плоской кривой. Ньютон же рассматривал движение точки и ввел понятие скорости в данный момент времени.Таккак значениепроизводнойотфункциивданнойточкехарактеризуетскоростьизме- нения функции в этой точке по сравнению со скоростью возраста- ния независимой переменной, можно использовать понятие произ- водной при определении скорости различныхпроцессов.
Замечания
Для независимой переменной x по определениюdx=Δx.
Наряду с обозначениемyиспользуют записьy=dy.
dx
Вфизикедляпроизводнойповременипринятыследующие
обозначения:
x=x(t);x.dx.
dt
ТАБЛИЦАПРОИЗВОДНЫХ
И ОСНОВНЫЕ ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ
Для нахождения производных пользуются таблицей производных элементарных функций.
Таблица производных элементарных функций
Функция |
Производная |
|
Функция |
Производная |
|
С (посто- янная) |
0 |
(1) |
logax |
1logae= 1 x xln0 |
(11) |
X |
1 |
(2) |
lgx |
1lge0, 4343 x x |
(12) |
xn |
nxn–1 |
(3) |
sinx |
cosx |
(13) |
1 x |
1 x2 |
(4) |
cosx |
–sinx |
(14) |
Продолжение
табл.
Функция |
Производная |
|
Функция |
Производная |
|
1 xn |
|
(5) |
tgx |
1 cos2x |
(15) |
x |
1 2x |
(6) |
ctgx |
1 sin2x |
(16) |
nx |
1 nnxn1 |
(7) |
arcsinx |
1 1x2 |
(17) |
ех |
ех |
(8) |
arccosx |
1 1x2 |
(18) |
ах |
ахlnа |
(9) |
arctgx |
1 1x2 |
(19) |
lnx |
1 x |
(10) |
arcctgx |
1 1x2 |
(20) |
Существуютследующиеосновныеправиладифференцирова-ния(здесьС—постоянная,аuиv—функцииотx,имеющиепро-
изводные):
(C)=0 (2.12)
(u+v)=u+v (2.13)
(Cu)=Cu (2.14)
(uv)=uv+uv (2.15)
⎛u⎞⎛uvuv⎞
⎜⎝v⎟⎠ ⎜⎝ v2⎟⎠
(2.16)
Приведем примеры нахожденияпроизводных.
Пример 1.Найти производную от функцииy5x32x23x4.
Основываясь на формуле (2.13), имеем
y5x32x23x4.
Далее, применяя формулы (2.12) и (2.14), получаем
y5x32x23x.
Наконец, пользуясь формулой (3) из таблицы, приходим к окон-чательному результату
y53x222x31, илиy15x24x3.
Пример 2.Дано:yx3cosx. Найти:y.
По правилу дифференцирования произведения функций (2.15) получаем
yx3sinx3x2cosx, илиyx3sinx3x2cosx.
Здесь применялись формулы (3) и (14) из таблицы.
