- •Механика
- •Учебно-методическое пособие
- •Длястудентовзаочнойформыобученияи дистанционногообразования
- •Оглавление
- •Математическое введение Чернобородова с.В.
- •Глава 1 кинематика материальной точки Зольников п.П.
- •Глава 2динамика материальной точки Зольников п.П.
- •Глава 3 работа и энергия законы сохранения Першин в.К.
- •Глава 4 момент импульса Фишбейн л.А.
- •Глава 5 элементы механики твердого тела Фишбейн л.А.
- •Глава 6 механические колебания и волны
- •Введение
- •Векторнаяалгебра
- •Сложениевекторов
- •Умножение вектора начисло
- •Вычитаниевекторов
- •Координатывектора
- •Длинавектора
- •Углымеждуосямикоординативектором
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2
- •Задача 1.3
- •Задача 1.4
- •Задача 1.5
- •Задача 1.6
- •Скалярное произведение двухвекторов
- •Физический смысл скалярногопроизведения
- •Задача 1.13 � �
- •Векторное произведение двухвекторов
- •Выражение векторногопроизведения через координатысомножителей
- •Физический смысл векторногопроизведения
- •Вопросы и задания для самопроверки
- •Дифференциальное исчислениефункции действительнойпеременной
- •Дифференцируемость функции.Дифференциал. Производнаяфункции
- •Геометрический смыслпроизводной
- •Геометрический смыслдифференциала
- •Физический смыслпроизводной
- •Производные сложныхфункций
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2
- •Задача 2.3
- •Интегральноеисчисление
- •Первообразнаяфункция
- •Неопределенныйинтеграл
- •Определенныйинтеграл
- •Геометрический смысл определенногоинтеграла
- •Физический смыслинтеграла
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.2
- •4. Дифференциальные уравнения
- •Дифференциальное уравнение, его порядок.Общееичастноерешениедифференциальногоуравнения
- •Дифференциальные уравнения с разделяющимисяпеременными
- •Как нашли решение уравнениямеханических незатухающихколебаний
- •Линейные однородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Линейные неоднородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Задача 4.5
- •Вопросы для самопроверки
- •Тесты математические для электронного экзамена Сложение и вычитание векторов
- •Векторное произведение
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Задачи для контрольных работ Сложение и вычитание векторов, длина вектора
- •Скалярное и векторное произведение векторов
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Глава 1кинематика материальной точки
- •Системаотсчета
- •Траектория, путь,перемещение
- •Вопросы и задания для самопроверки
- •Скорость
- •Ускорение
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2.
- •Задача 1.3.
- •Кинематика равномерного прямолинейного движения
- •Кинематикаравнопеременного прямолинейногодвижения
- •Кинематика равнопеременногодвижения
- •Кинематика равномерного вращательногодвижения
- •Примеры решения задач
- •Задача 1.5.
- •Задача 1.6.
- •Задача 1.7.
- •Вопросы и задания для самопроверки
- •Основные положения
- •Мгновеннаяскорость � �
- •Касательное (тангенциальное)ускорение
- •Нормальноеускорение � � �
- •Тесты � � � для электронного экзамена
- •Задачи для контрольных работ
- •Глава 2 динамика материальной точки
- •Первый закон ньютона.Инерциальные системыотсчета
- •Сила, масса, импульстела
- •Второй законньютона
- •Уравнение движения материальнойточки
- •Третий законньютона
- •Вопросы и задания для самопроверки
- •Принцип относительностигалилея. Неинерциальные системыотсчета
- •Вопросы и задания для самопроверки
- •Силы вмеханике
- •Силы гравитационноговзаимодействия
- •Силытрения
- •Сила сопротивлениясреды
- •Силаупругости
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2.
- •Задача 2.3.
- •Задача2.4
- •Задача 2.6
- •Задача 2.7
- •Задача 2.8
- •Задача 2.9
- •Задача 2.10
- •Задача 2.11
- •Задача 2.12
- •Основные положения
- •Обозначения, используемые в главе 2
- •Тесты для электронного экзамена
- •Задачи для контрольных работ
- •Глава 3 работа и энергия.Законы сохранения
- •3.1. Основные понятия и определения
- •Работасилы.Мощность
- •Работа постоянной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Α α Задача 3.2
- •Задача 3.3
- •Работа переменной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.5
- •Задача 3.6
- •Кинетическаяэнергия
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.8
- •Потенциальнаяэнергия
- •Потенциальная энергия гравитационного взаимодействия двух тел
- •Потенциальная энергия идеальной деформированной пружиныи закрепленного на нейтела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Законы сохранения и измененияэнергии Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.11
- •Задача 3.12
- •Задача 3.13
- •Задача 3.14
- •Закон сохранения и измененияимпульса Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Столкновениятел
- •Абсолютно неупругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.17
- •Абсолютно упругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.19
- •Задача 3.20
- •Задача 3.21
- •Задача 3.22
- •Законизменениямеханическойэнергиисистемы–изменение
- •Потенциальнаяэнергиятела,поднятогонадЗемлей–
- •И�мпульссилы–
- •Обозначения, используемые в главе 3
- •Тесты для электронного экзамена Работа постоянной силы
- •Работа переменной силы
- •Мощность силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Теорема об изменении кинетической энергии (импульс)
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Задачи для контрольных работ Работа постоянной силы
- •Работа переменной силы
- •Мощность
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Глава 4момент импульса.
- •P 4.1. Момент импульса частицы. Момент силы
- •Уравнениемоментов.
- •Уравнение моментов относительно оси. Закон сохранения момента импульсачастицы
- •Вопросы и задания для самопроверки
- •Задача 4.1
- •Примеры решениязадач
- •Движение Луны вокруг Земли
- •Движение электрона вокруг протона
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Момент импульса системычастиц. Закон сохранения момента импульса системы частиц относительно неподвижной (ых) точки и оси
- •12 21 FвнутFвнут,
- •12 21 12 12 � � � � FвнутFвнутFвнутFвнут0
- •12 21 MвнутMвнут0.
- •Вопросы и задания для самопроверки
- •Центр масс системычастиц
- •Прыжок кошки
- •Движение человека
- •Движение человека на лыжах, автомобиля по дороге, поезда по рельсам
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Абсолютно твердое тело.Равнодействующая сил, приложенных к твердомутелу.
- •1 Mравн f
- •Вопросы и задания для самопроверки
- •Задача 4.6
- •Примеры решениязадач
- •Способы определениякоординатцентра тяжести твердоготела
- •Симметрия
- •Разбиение
- •Задача 4.7
- •Дополнение
- •Задача4.8
- •Уравнение моментов
- •Момент импульса системы частиц
- •Центр масс системы частиц
- •Абсолютно твердое тело. Центр тяжести
- •Задачи для контрольных работ
- •Момент импульса частицы. Момент силы. Уравнение моментов
- •Центр масс системы частиц
- •Центр тяжести
- •Глава 5 элементы механики твердого тела
- •Динамика твердоготела
- •Условияравновесиятвердоготела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.2
- •Задача 5.3
- •Поступательное движение твердоготела
- •Вращение твердого тела вокруг неподвижнойоси. Момент инерции твердоготела. Теорема штейнера Дискретная система частиц
- •Непрерывная система частиц
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.5
- •Задача 5.6
- •Задача 5.7
- •Задача 5.8
- •Задача 5.9
- •Закон сохранения момента импульсасистемы твердых тел при их вращательномдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижнойоси.
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •5.7. Плоское движение твердого тела
- •Кинетическая энергия при плоскомдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Способ1
- •Способ2
- •Тесты для электронного экзамена Условия равновесия твердого тела
- •Момент инерции твердого тела. Теорема Штейнера
- •Закон сохранения момента импульса системы твердых тел
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси. Работа внешних сил при повороте твердого тела
- •Задачи для контрольных работ
- •Глава 6механические колебания и волны
- •Понятие колебательногодвижения
- •Кинематика механических гармоническихколебаний
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.2
- •Задача 6.3
- •Динамика механических гармоническихколебаний
- •Пружинныймаятник
- •Физическиймаятник
- •Математическиймаятник
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.5
- •Задача 6.6
- •Задача6.7
- •Задача 6.8
- •Сложение однонаправленныхколебаний одинаковойчастоты
- •Сложениедвухгармоническихколебанийодинаковойчастоты,происходящих вдоль однойпрямой
- •Сложение гармонических колебаний со слегка отличающимисячастотами, происходящими вдоль одной прямой
- •Сложение взаимно перпендикулярных гармоническихколебаний
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной нулю
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Затухающие механическиеколебания
- •Основные параметры, характеризующие затухающие колебания
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.12
- •Задача 6.13
- •Вынужденные механическиеколебания
- •Пояснение
- •Пояснение к искусственному преобразованию
- •Вопросы и задания для самоподготовки
- •Примеры решения задач
- •Задача 6.15
- •Механическиеволны
- •Общиесведенияомеханическихволнах
- •Видыволн
- •Уравнение плоской гармоническойволны
- •Интерференцияволн
- •Стоячиеволны
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.17
- •Задача 6.18
- •Задача 6.19
- •Задача 6.20
- •Задача 6.21
- •Задача 6.22
- •Основные положения Кинематика механических гармонических колебаний
- •Динамика механических гармонических колебаний
- •Кинетическаяипотенциальнаяэнергиипружинногомаятника–
- •Сложение гармонических колебаний
- •Затухающие механические колебания
- •Условныйпериод затухающих механических колебаний–
- •Вынужденные механические колебания
- •Механические волны
- •Разностьфазмеждудвумяточками–
- •Уравнениеплоской гармонической волны–
- •Координаты пучностей и узлов стоячей волны–
- •Обозначения, использованные в главе 6
- •Тесты для электронного экзамена Собственные незатухающие колебания
- •Пружинный маятник
- •Математический маятник
- •Физический маятник
- •Затухающие колебания
- •Вынужденные колебания
- •Механические волны
- •Задачи для контрольных работ Сложение колебаний
- •Собственные незатухающие колебания
- •Затухающие колебания
- •Вынужденные колебания. Резонанс
- •Механические волны
- •Указания к выполнению контрольной работы
- •Продолжение табл. № 1
- •Продолжение табл. № 2
- •Физика Механика
- •620034, Екатеринбург, ул. Колмогорова, 66
Вопросы и задания для самопроверки
Сформулируйте условия равновесия твердоготела.
В каком случае проекция момента силы, лежащей в плоскостиХОУ, на осьzположительна и равна произведению модуля силы на плечосилы?
В каком случае проекция момента силы, лежащей в плоско- стиХОУ, на осьzотрицательна и равна минус произведению моду- ля силы на плечосилы?
В каком случае проекция ненулевого момента силы, лежащей в плоскостиХОУ, на осьzравнанулю?
Объясните разницу между утверждениями: тело находитсяврав-новесии, тело находится впокое.
Примеры решения задач
Задача 5.1
К рукоятке гвоздодера приложена силаF= 150 H. Длина гвоздо- дераотоснованиядоконцарукояткиL=25см,отгвоздядобоковой поверхностигвоздодера—l=5см.Определитьсилу,приложеннуюк
гвоздю.(Рассмотретьсостоя- ние равновесия, силойтяже- сти гвоздодерапренебречь).
Дано:F= 150 H;
L= 25 см = 0,25 м;
Y
F
O
X
L Q
N
M
g
ll=5см=�0,05м.Найти:Q.
O`
FтрO`
K K
Рассмотрим силы, прило-женные к гвоздодеру (рис. а
а б в
и б). В процессе выдергиванияг�воздяна неговозд�ействуютчетыреобъекта (тела): человек с силойF, гвоздь с силойK, Земля с силой
�
Mgипо�верхность,накоторуюопирается�гвоздодер,ссилойреакцииопорыN(нормальная составляющая) иFтр(горизонтальная состав-
ляющая).Таккак(5.4) �
Fi
i
0,
то второе уравнение равновесия твердого тела (5.6) можно записать относительно произвольной точкиO'. Выберем ее, как показано на рисунке. Отметим, что все силы, приложенные кгвоздодеру,лежат в плоскостиХОY.Поэтому равенство (5.6) сводится к (5.10)
Mzi0,
i
которое имеет вид равенства (5.13). Рассчитаемпроекциимоментов всех сил, приложенных к гвоздодеру:
Мтр=0,MN=0–таккакточкаO'лежитналиниидействияэтих сил;MMg=0–таккакпоусловиямзадачисилойтяжестигвоздоде- раможнопренебречь;
MF=FL–таккакплечосилы�(перпендикуляр,опущенныйизточ- киO'налиниюдействиясилыF)равноL,исилавращаетгвоздодер
относительно точкиO'против часовой стрелки;
MK=–Kl–таккакплечосилы(�перпендикуляр,опущенныйиз
точкиO'на линию действия силыK) равноl, и сила вращает гвоз-
додер относительно точкиO'по часовой стрелке.
Таким образом, получаем уравнение
MKMF0 (1)
или
FLKl0. (2)
Выражая из этого уравнения силуK, имеем
KFL. (3)
l
По третьему закону Ньютона сила, с которой гвоздь действует на гвоздодер равна по модулю силе, с которой гвоздодер действует на гвоздь (рис. в), т. е.
QKFL. (4)
l
Таким образом, сила, с которой действует гвоздодер на гвоздь, тем больше, чем длиннее его ручка. Подставляя численные значе- ния, имеем
Q1500,25750Н. (5)
0, 05
Ответ:QFL= 750 Н.
l
Задача 5.2
Нагоризонтальнойплоскости
в равновесии находитсякубмас- N
сойm. Определитьвеличину,на- C
правление и точку приложения к
g
x
кубу силыреакцииопоры. О KДано:m.�
P=m
Найти:N.
Пусть нормальная составляющая силы реакции опоры
�
Nпри-
ложена в неизвестной точке поверхности кубаK, соприкасающей- ся с опорой на расстоянииxот точкиО. Запишем условияравнове-
сия (5.4) и(5.6). � �
NP0, (1)
� �
MNMP0. (2)
Из равенства нулю суммы двух векторов следует, что эти вектора равны по модулю и противоположны по направлению, т. е.
NPmg, (3)
MNMP. (4)
Таккак сумма сил, приложенных ктелу,равна нулю (1), то для определения моментов сил выберем точкуОнапример так, как по- казано на рисунке.Точкаприложения силы тяжести (центр тяжести куба) находится вт.С— центре его симметрии. Следовательно, ли- нияеедействияпроходитчерезточкуО,иплечосилытяжестиотно- сительно этой точки равно нулю.Тогда
MP0P0. (5)
Плечо нормальной составляющей силы реакции опорыNпо оп- ределению равноx. Тогда модуль момента силы
MNxNxmg. (6)
Следуя (4), запишем
и
�
Следовательно,силы и
xmg0, (7)
x0. (8)
�лежат на одно прямой, т. е. точкаО
N mg �
приложения силы реакции опорыNк кубу — точка пересечения го-
�
mg
.
ризонтальной поверхности линиейдействиясилы ��
Ответ:Nmg,Nmg. Точка приложения силы реакции опо- ры — пересечение горизонтальной поверхности и линии действия силы тяжести.
