- •Механика
- •Учебно-методическое пособие
- •Длястудентовзаочнойформыобученияи дистанционногообразования
- •Оглавление
- •Математическое введение Чернобородова с.В.
- •Глава 1 кинематика материальной точки Зольников п.П.
- •Глава 2динамика материальной точки Зольников п.П.
- •Глава 3 работа и энергия законы сохранения Першин в.К.
- •Глава 4 момент импульса Фишбейн л.А.
- •Глава 5 элементы механики твердого тела Фишбейн л.А.
- •Глава 6 механические колебания и волны
- •Введение
- •Векторнаяалгебра
- •Сложениевекторов
- •Умножение вектора начисло
- •Вычитаниевекторов
- •Координатывектора
- •Длинавектора
- •Углымеждуосямикоординативектором
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2
- •Задача 1.3
- •Задача 1.4
- •Задача 1.5
- •Задача 1.6
- •Скалярное произведение двухвекторов
- •Физический смысл скалярногопроизведения
- •Задача 1.13 � �
- •Векторное произведение двухвекторов
- •Выражение векторногопроизведения через координатысомножителей
- •Физический смысл векторногопроизведения
- •Вопросы и задания для самопроверки
- •Дифференциальное исчислениефункции действительнойпеременной
- •Дифференцируемость функции.Дифференциал. Производнаяфункции
- •Геометрический смыслпроизводной
- •Геометрический смыслдифференциала
- •Физический смыслпроизводной
- •Производные сложныхфункций
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2
- •Задача 2.3
- •Интегральноеисчисление
- •Первообразнаяфункция
- •Неопределенныйинтеграл
- •Определенныйинтеграл
- •Геометрический смысл определенногоинтеграла
- •Физический смыслинтеграла
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.2
- •4. Дифференциальные уравнения
- •Дифференциальное уравнение, его порядок.Общееичастноерешениедифференциальногоуравнения
- •Дифференциальные уравнения с разделяющимисяпеременными
- •Как нашли решение уравнениямеханических незатухающихколебаний
- •Линейные однородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Линейные неоднородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Задача 4.5
- •Вопросы для самопроверки
- •Тесты математические для электронного экзамена Сложение и вычитание векторов
- •Векторное произведение
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Задачи для контрольных работ Сложение и вычитание векторов, длина вектора
- •Скалярное и векторное произведение векторов
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Глава 1кинематика материальной точки
- •Системаотсчета
- •Траектория, путь,перемещение
- •Вопросы и задания для самопроверки
- •Скорость
- •Ускорение
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2.
- •Задача 1.3.
- •Кинематика равномерного прямолинейного движения
- •Кинематикаравнопеременного прямолинейногодвижения
- •Кинематика равнопеременногодвижения
- •Кинематика равномерного вращательногодвижения
- •Примеры решения задач
- •Задача 1.5.
- •Задача 1.6.
- •Задача 1.7.
- •Вопросы и задания для самопроверки
- •Основные положения
- •Мгновеннаяскорость � �
- •Касательное (тангенциальное)ускорение
- •Нормальноеускорение � � �
- •Тесты � � � для электронного экзамена
- •Задачи для контрольных работ
- •Глава 2 динамика материальной точки
- •Первый закон ньютона.Инерциальные системыотсчета
- •Сила, масса, импульстела
- •Второй законньютона
- •Уравнение движения материальнойточки
- •Третий законньютона
- •Вопросы и задания для самопроверки
- •Принцип относительностигалилея. Неинерциальные системыотсчета
- •Вопросы и задания для самопроверки
- •Силы вмеханике
- •Силы гравитационноговзаимодействия
- •Силытрения
- •Сила сопротивлениясреды
- •Силаупругости
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2.
- •Задача 2.3.
- •Задача2.4
- •Задача 2.6
- •Задача 2.7
- •Задача 2.8
- •Задача 2.9
- •Задача 2.10
- •Задача 2.11
- •Задача 2.12
- •Основные положения
- •Обозначения, используемые в главе 2
- •Тесты для электронного экзамена
- •Задачи для контрольных работ
- •Глава 3 работа и энергия.Законы сохранения
- •3.1. Основные понятия и определения
- •Работасилы.Мощность
- •Работа постоянной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Α α Задача 3.2
- •Задача 3.3
- •Работа переменной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.5
- •Задача 3.6
- •Кинетическаяэнергия
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.8
- •Потенциальнаяэнергия
- •Потенциальная энергия гравитационного взаимодействия двух тел
- •Потенциальная энергия идеальной деформированной пружиныи закрепленного на нейтела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Законы сохранения и измененияэнергии Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.11
- •Задача 3.12
- •Задача 3.13
- •Задача 3.14
- •Закон сохранения и измененияимпульса Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Столкновениятел
- •Абсолютно неупругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.17
- •Абсолютно упругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.19
- •Задача 3.20
- •Задача 3.21
- •Задача 3.22
- •Законизменениямеханическойэнергиисистемы–изменение
- •Потенциальнаяэнергиятела,поднятогонадЗемлей–
- •И�мпульссилы–
- •Обозначения, используемые в главе 3
- •Тесты для электронного экзамена Работа постоянной силы
- •Работа переменной силы
- •Мощность силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Теорема об изменении кинетической энергии (импульс)
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Задачи для контрольных работ Работа постоянной силы
- •Работа переменной силы
- •Мощность
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Глава 4момент импульса.
- •P 4.1. Момент импульса частицы. Момент силы
- •Уравнениемоментов.
- •Уравнение моментов относительно оси. Закон сохранения момента импульсачастицы
- •Вопросы и задания для самопроверки
- •Задача 4.1
- •Примеры решениязадач
- •Движение Луны вокруг Земли
- •Движение электрона вокруг протона
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Момент импульса системычастиц. Закон сохранения момента импульса системы частиц относительно неподвижной (ых) точки и оси
- •12 21 FвнутFвнут,
- •12 21 12 12 � � � � FвнутFвнутFвнутFвнут0
- •12 21 MвнутMвнут0.
- •Вопросы и задания для самопроверки
- •Центр масс системычастиц
- •Прыжок кошки
- •Движение человека
- •Движение человека на лыжах, автомобиля по дороге, поезда по рельсам
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Абсолютно твердое тело.Равнодействующая сил, приложенных к твердомутелу.
- •1 Mравн f
- •Вопросы и задания для самопроверки
- •Задача 4.6
- •Примеры решениязадач
- •Способы определениякоординатцентра тяжести твердоготела
- •Симметрия
- •Разбиение
- •Задача 4.7
- •Дополнение
- •Задача4.8
- •Уравнение моментов
- •Момент импульса системы частиц
- •Центр масс системы частиц
- •Абсолютно твердое тело. Центр тяжести
- •Задачи для контрольных работ
- •Момент импульса частицы. Момент силы. Уравнение моментов
- •Центр масс системы частиц
- •Центр тяжести
- •Глава 5 элементы механики твердого тела
- •Динамика твердоготела
- •Условияравновесиятвердоготела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.2
- •Задача 5.3
- •Поступательное движение твердоготела
- •Вращение твердого тела вокруг неподвижнойоси. Момент инерции твердоготела. Теорема штейнера Дискретная система частиц
- •Непрерывная система частиц
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.5
- •Задача 5.6
- •Задача 5.7
- •Задача 5.8
- •Задача 5.9
- •Закон сохранения момента импульсасистемы твердых тел при их вращательномдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижнойоси.
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •5.7. Плоское движение твердого тела
- •Кинетическая энергия при плоскомдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Способ1
- •Способ2
- •Тесты для электронного экзамена Условия равновесия твердого тела
- •Момент инерции твердого тела. Теорема Штейнера
- •Закон сохранения момента импульса системы твердых тел
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси. Работа внешних сил при повороте твердого тела
- •Задачи для контрольных работ
- •Глава 6механические колебания и волны
- •Понятие колебательногодвижения
- •Кинематика механических гармоническихколебаний
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.2
- •Задача 6.3
- •Динамика механических гармоническихколебаний
- •Пружинныймаятник
- •Физическиймаятник
- •Математическиймаятник
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.5
- •Задача 6.6
- •Задача6.7
- •Задача 6.8
- •Сложение однонаправленныхколебаний одинаковойчастоты
- •Сложениедвухгармоническихколебанийодинаковойчастоты,происходящих вдоль однойпрямой
- •Сложение гармонических колебаний со слегка отличающимисячастотами, происходящими вдоль одной прямой
- •Сложение взаимно перпендикулярных гармоническихколебаний
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной нулю
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Затухающие механическиеколебания
- •Основные параметры, характеризующие затухающие колебания
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.12
- •Задача 6.13
- •Вынужденные механическиеколебания
- •Пояснение
- •Пояснение к искусственному преобразованию
- •Вопросы и задания для самоподготовки
- •Примеры решения задач
- •Задача 6.15
- •Механическиеволны
- •Общиесведенияомеханическихволнах
- •Видыволн
- •Уравнение плоской гармоническойволны
- •Интерференцияволн
- •Стоячиеволны
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.17
- •Задача 6.18
- •Задача 6.19
- •Задача 6.20
- •Задача 6.21
- •Задача 6.22
- •Основные положения Кинематика механических гармонических колебаний
- •Динамика механических гармонических колебаний
- •Кинетическаяипотенциальнаяэнергиипружинногомаятника–
- •Сложение гармонических колебаний
- •Затухающие механические колебания
- •Условныйпериод затухающих механических колебаний–
- •Вынужденные механические колебания
- •Механические волны
- •Разностьфазмеждудвумяточками–
- •Уравнениеплоской гармонической волны–
- •Координаты пучностей и узлов стоячей волны–
- •Обозначения, использованные в главе 6
- •Тесты для электронного экзамена Собственные незатухающие колебания
- •Пружинный маятник
- •Математический маятник
- •Физический маятник
- •Затухающие колебания
- •Вынужденные колебания
- •Механические волны
- •Задачи для контрольных работ Сложение колебаний
- •Собственные незатухающие колебания
- •Затухающие колебания
- •Вынужденные колебания. Резонанс
- •Механические волны
- •Указания к выполнению контрольной работы
- •Продолжение табл. № 1
- •Продолжение табл. № 2
- •Физика Механика
- •620034, Екатеринбург, ул. Колмогорова, 66
Вопросы и задания для самопроверки
Дайте определение потенциальной энергии системытел.
Обоснуйте утверждение: совершение силами, действующими в системе, положительной работы сопровождается изменениями кон- фигурации, приводящими к понижению потенциальнойэнергии.
Как изменяется потенциальная энергия системы, если дейст- вующие в ней силы совершают отрицательнуюработу?
Может ли потенциальная энергия тела, поднятого над землей, бытьотрицательной?
Может ли потенциальная энергия упругой пружины быть от- рицательной?
Обоснуйте утверждение: зависимость потенциальной энергии деформированной пружины от квадрата удлинения определяется за- кономГука.
Изменятсялиизложенныевышеколичественныерезультаты икачественныевыводы,еслипредположениеопропорционально- стимеждусилойиудлинениемпружины(законГука)небудетвы- полняться?
В чем состоит отличие между кинетической и потенциальной энергиями?
Всегда ли уменьшение потенциальной энергии системы сопро- вождается возникновением и возрастанием кинетическойэнергии?
Обоснуйтеутверждение:всистеме,предоставленнойдействию только внутренних сил, происходят изменения ее конфигурации, со- провождающиеся уменьшением потенциальнойэнергии.
Дайте определение устойчивого и неустойчивого состояния равновесия.
Работу какого знака совершают внутренние силы, возникаю- щие при отклонении системы от устойчивого (неустойчивого) поло- женияравновесия?
Выведете математические условия для нахождения системы в состоянии устойчивого и неустойчивогоравновесия.
Примеры решения задач
Задача 3.9
Если массуm1= 3 кг тела, висящего на невесомой пружине, уве- личить наm2= 1кг,то ее длина возрастает наΔL2= 30 мм. Найтипо-тенциальнуюUэнергию пружины в конечном состоянии.
Дано:m1= 5 кг;m2= 1 кг;ΔL2= 30мм.Найти:U.
Для решения задачи составим следующую систему уравнений с тремя неизвестными величинами: коэффициентом упругостипружи-ныk, удлинениемΔL2пружины, возникающем в пружине поддей-ствием тела массойm2; потенциальной энергии пружины в конеч- ном состоянииU
m1g=kΔL1—условиеравновесиявначальномсостоянии; (1)(m1+m2)g=k(ΔL1+ΔL2)—условиеравновесия
вконечномсостоянии; (2)
k(ΔLΔL)2
U 1 2— потенциальная энергияпружин
2 вконечномсостоянии. (3)
Из соотношений (2), найдем коэффициент упругости
m2gkΔL2
kgm2
ΔL2
. (4)
Подставляя последний результат в (1), имеем
1 2
mgm gΔL1. (5)ΔL2
Отсюда найдем удлинение пружины в начальномсостоянии
ΔLΔLm1. (6)
m
1 22
Подставляя(4)и(6)в(3),получимокончательныйрезультат,пред- ставленный вответе.
(mm)2
1
Ответ:U1 2gΔL= 5,4(Дж).2m2
Законы сохранения и измененияэнергии Замкнутая система
Рассмотрим изолированную систему материальных телm1,m2,m3,
…,междукоторымидействуюттолькосилытяготенияилиупругости (потенциальные силы). Запишем для каждого материальноготела
уравнение второго закона Ньютона.
� � � �
⎧mdv1FF...F,
⎪1dt
12 13 1n
⎪ � � � �
⎪⎪mdv2FF...F,
⎨2dt
⎪..
21 23 2n
(3.44)
⎪ � � � �
⎪mdvnFF...F ,
� ⎪⎩
ndt
n1 n2
n,n1
гдеFik–сила,действующаянаi-юточкусостороныk-ой(вн�утрен�няяс�ила).Отметим, что в уравнениях отсутствуютслагаемыеF11,F22…,Fii…,таккактелавзаимодействуюттолькомеждусобойиневзаимо-
действуютсамиссобой.Вдальнейшемизложен�иибудемформально
считать все эти слагаемые равными нулю, т. е.Fii0(i= 1, 2, ...,n).
,
.
Пустьзавремяdtчастицысовершаютперемещения�
dx1
�
dx2
...
�
dxn
Учитывая,что
� �
dxividt, (i= 1, 2, …,n),умножим каждое уравнение системы (3.44) слева на�
t, а справа на
�
dxi.Врезультатеимеем
� � �
vid
⎧m(�,�)(FF...F)d�
0,
⎪1v1dv1 1�2 1�3 1�nx1
⎪m(�,�)(FF...F)d�
0,
⎨2v2dv2 21 23 2nx2
(3.45)
⎪...
� � � � � �
⎪m(v,dv)(FF
...F )dx
0.
⎩nn n n1 n2
n,n-1 n
Складывая все эти уравнения, получим
n � �
n� � � �
mi(vi,dvi)Fi1Fi2...Fin)dxi0. (3.46)
i1 i1
Данное соотношение можно переписать в более краткой форме
n � �
n��
mi(vi,dvi)Fijdxi0. (3.47)
i1 i,j1
Первое слагаемое в этом равенстве
n � � n⎛mv2⎞
ii
mi(vi,dvi)d⎜ ⎟dK(3.48)
i1
i1
⎝2⎠
представляетсобойбесконечномалоеизменениекинетическойэнер- гиивсейсистемы.Второеслагаемое—бесконечномалаяработавсех внутренних сил системы. Согласно рассмотрению п. 3.4 работа есть бесконечно малое уменьшение потенциальной энергии. Поэтому ее можно представить ввиде
n��
FijdxidU. (3.49)
i,j1
С учетом введенных обозначений (3.48) и (3.49) равенство (3.47) перепишем в виде
или
dKdU0
d(KU)0.
dt
Отсюда следует, что полная энергия системы, в которой действу- ют только внутренние силы, для любого момента времени остается величиной постоянной, т. е.
KUconst.
Значение const в последнем равенстве определяется значениями кинетическойK0и потенциальнойU0энергий системы в какой-то оп- ределенный момент времени
KUK0U0.
Полнаяэнергияизолированнойсистемы,вкоторойдействуюттоль-ко упругие силы или силы всемирного тяготения, есть величина посто- янная.Это закон сохранения энергии в механике, который длярас-
сматриваемого случая (отсутствуют силы трения) непосредственно вытекает из второго и третьего законов Ньютона.
