- •Механика
- •Учебно-методическое пособие
- •Длястудентовзаочнойформыобученияи дистанционногообразования
- •Оглавление
- •Математическое введение Чернобородова с.В.
- •Глава 1 кинематика материальной точки Зольников п.П.
- •Глава 2динамика материальной точки Зольников п.П.
- •Глава 3 работа и энергия законы сохранения Першин в.К.
- •Глава 4 момент импульса Фишбейн л.А.
- •Глава 5 элементы механики твердого тела Фишбейн л.А.
- •Глава 6 механические колебания и волны
- •Введение
- •Векторнаяалгебра
- •Сложениевекторов
- •Умножение вектора начисло
- •Вычитаниевекторов
- •Координатывектора
- •Длинавектора
- •Углымеждуосямикоординативектором
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2
- •Задача 1.3
- •Задача 1.4
- •Задача 1.5
- •Задача 1.6
- •Скалярное произведение двухвекторов
- •Физический смысл скалярногопроизведения
- •Задача 1.13 � �
- •Векторное произведение двухвекторов
- •Выражение векторногопроизведения через координатысомножителей
- •Физический смысл векторногопроизведения
- •Вопросы и задания для самопроверки
- •Дифференциальное исчислениефункции действительнойпеременной
- •Дифференцируемость функции.Дифференциал. Производнаяфункции
- •Геометрический смыслпроизводной
- •Геометрический смыслдифференциала
- •Физический смыслпроизводной
- •Производные сложныхфункций
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2
- •Задача 2.3
- •Интегральноеисчисление
- •Первообразнаяфункция
- •Неопределенныйинтеграл
- •Определенныйинтеграл
- •Геометрический смысл определенногоинтеграла
- •Физический смыслинтеграла
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.2
- •4. Дифференциальные уравнения
- •Дифференциальное уравнение, его порядок.Общееичастноерешениедифференциальногоуравнения
- •Дифференциальные уравнения с разделяющимисяпеременными
- •Как нашли решение уравнениямеханических незатухающихколебаний
- •Линейные однородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Линейные неоднородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Задача 4.5
- •Вопросы для самопроверки
- •Тесты математические для электронного экзамена Сложение и вычитание векторов
- •Векторное произведение
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Задачи для контрольных работ Сложение и вычитание векторов, длина вектора
- •Скалярное и векторное произведение векторов
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Глава 1кинематика материальной точки
- •Системаотсчета
- •Траектория, путь,перемещение
- •Вопросы и задания для самопроверки
- •Скорость
- •Ускорение
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2.
- •Задача 1.3.
- •Кинематика равномерного прямолинейного движения
- •Кинематикаравнопеременного прямолинейногодвижения
- •Кинематика равнопеременногодвижения
- •Кинематика равномерного вращательногодвижения
- •Примеры решения задач
- •Задача 1.5.
- •Задача 1.6.
- •Задача 1.7.
- •Вопросы и задания для самопроверки
- •Основные положения
- •Мгновеннаяскорость � �
- •Касательное (тангенциальное)ускорение
- •Нормальноеускорение � � �
- •Тесты � � � для электронного экзамена
- •Задачи для контрольных работ
- •Глава 2 динамика материальной точки
- •Первый закон ньютона.Инерциальные системыотсчета
- •Сила, масса, импульстела
- •Второй законньютона
- •Уравнение движения материальнойточки
- •Третий законньютона
- •Вопросы и задания для самопроверки
- •Принцип относительностигалилея. Неинерциальные системыотсчета
- •Вопросы и задания для самопроверки
- •Силы вмеханике
- •Силы гравитационноговзаимодействия
- •Силытрения
- •Сила сопротивлениясреды
- •Силаупругости
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2.
- •Задача 2.3.
- •Задача2.4
- •Задача 2.6
- •Задача 2.7
- •Задача 2.8
- •Задача 2.9
- •Задача 2.10
- •Задача 2.11
- •Задача 2.12
- •Основные положения
- •Обозначения, используемые в главе 2
- •Тесты для электронного экзамена
- •Задачи для контрольных работ
- •Глава 3 работа и энергия.Законы сохранения
- •3.1. Основные понятия и определения
- •Работасилы.Мощность
- •Работа постоянной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Α α Задача 3.2
- •Задача 3.3
- •Работа переменной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.5
- •Задача 3.6
- •Кинетическаяэнергия
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.8
- •Потенциальнаяэнергия
- •Потенциальная энергия гравитационного взаимодействия двух тел
- •Потенциальная энергия идеальной деформированной пружиныи закрепленного на нейтела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Законы сохранения и измененияэнергии Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.11
- •Задача 3.12
- •Задача 3.13
- •Задача 3.14
- •Закон сохранения и измененияимпульса Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Столкновениятел
- •Абсолютно неупругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.17
- •Абсолютно упругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.19
- •Задача 3.20
- •Задача 3.21
- •Задача 3.22
- •Законизменениямеханическойэнергиисистемы–изменение
- •Потенциальнаяэнергиятела,поднятогонадЗемлей–
- •И�мпульссилы–
- •Обозначения, используемые в главе 3
- •Тесты для электронного экзамена Работа постоянной силы
- •Работа переменной силы
- •Мощность силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Теорема об изменении кинетической энергии (импульс)
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Задачи для контрольных работ Работа постоянной силы
- •Работа переменной силы
- •Мощность
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Глава 4момент импульса.
- •P 4.1. Момент импульса частицы. Момент силы
- •Уравнениемоментов.
- •Уравнение моментов относительно оси. Закон сохранения момента импульсачастицы
- •Вопросы и задания для самопроверки
- •Задача 4.1
- •Примеры решениязадач
- •Движение Луны вокруг Земли
- •Движение электрона вокруг протона
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Момент импульса системычастиц. Закон сохранения момента импульса системы частиц относительно неподвижной (ых) точки и оси
- •12 21 FвнутFвнут,
- •12 21 12 12 � � � � FвнутFвнутFвнутFвнут0
- •12 21 MвнутMвнут0.
- •Вопросы и задания для самопроверки
- •Центр масс системычастиц
- •Прыжок кошки
- •Движение человека
- •Движение человека на лыжах, автомобиля по дороге, поезда по рельсам
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Абсолютно твердое тело.Равнодействующая сил, приложенных к твердомутелу.
- •1 Mравн f
- •Вопросы и задания для самопроверки
- •Задача 4.6
- •Примеры решениязадач
- •Способы определениякоординатцентра тяжести твердоготела
- •Симметрия
- •Разбиение
- •Задача 4.7
- •Дополнение
- •Задача4.8
- •Уравнение моментов
- •Момент импульса системы частиц
- •Центр масс системы частиц
- •Абсолютно твердое тело. Центр тяжести
- •Задачи для контрольных работ
- •Момент импульса частицы. Момент силы. Уравнение моментов
- •Центр масс системы частиц
- •Центр тяжести
- •Глава 5 элементы механики твердого тела
- •Динамика твердоготела
- •Условияравновесиятвердоготела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.2
- •Задача 5.3
- •Поступательное движение твердоготела
- •Вращение твердого тела вокруг неподвижнойоси. Момент инерции твердоготела. Теорема штейнера Дискретная система частиц
- •Непрерывная система частиц
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.5
- •Задача 5.6
- •Задача 5.7
- •Задача 5.8
- •Задача 5.9
- •Закон сохранения момента импульсасистемы твердых тел при их вращательномдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижнойоси.
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •5.7. Плоское движение твердого тела
- •Кинетическая энергия при плоскомдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Способ1
- •Способ2
- •Тесты для электронного экзамена Условия равновесия твердого тела
- •Момент инерции твердого тела. Теорема Штейнера
- •Закон сохранения момента импульса системы твердых тел
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси. Работа внешних сил при повороте твердого тела
- •Задачи для контрольных работ
- •Глава 6механические колебания и волны
- •Понятие колебательногодвижения
- •Кинематика механических гармоническихколебаний
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.2
- •Задача 6.3
- •Динамика механических гармоническихколебаний
- •Пружинныймаятник
- •Физическиймаятник
- •Математическиймаятник
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.5
- •Задача 6.6
- •Задача6.7
- •Задача 6.8
- •Сложение однонаправленныхколебаний одинаковойчастоты
- •Сложениедвухгармоническихколебанийодинаковойчастоты,происходящих вдоль однойпрямой
- •Сложение гармонических колебаний со слегка отличающимисячастотами, происходящими вдоль одной прямой
- •Сложение взаимно перпендикулярных гармоническихколебаний
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной нулю
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Затухающие механическиеколебания
- •Основные параметры, характеризующие затухающие колебания
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.12
- •Задача 6.13
- •Вынужденные механическиеколебания
- •Пояснение
- •Пояснение к искусственному преобразованию
- •Вопросы и задания для самоподготовки
- •Примеры решения задач
- •Задача 6.15
- •Механическиеволны
- •Общиесведенияомеханическихволнах
- •Видыволн
- •Уравнение плоской гармоническойволны
- •Интерференцияволн
- •Стоячиеволны
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.17
- •Задача 6.18
- •Задача 6.19
- •Задача 6.20
- •Задача 6.21
- •Задача 6.22
- •Основные положения Кинематика механических гармонических колебаний
- •Динамика механических гармонических колебаний
- •Кинетическаяипотенциальнаяэнергиипружинногомаятника–
- •Сложение гармонических колебаний
- •Затухающие механические колебания
- •Условныйпериод затухающих механических колебаний–
- •Вынужденные механические колебания
- •Механические волны
- •Разностьфазмеждудвумяточками–
- •Уравнениеплоской гармонической волны–
- •Координаты пучностей и узлов стоячей волны–
- •Обозначения, использованные в главе 6
- •Тесты для электронного экзамена Собственные незатухающие колебания
- •Пружинный маятник
- •Математический маятник
- •Физический маятник
- •Затухающие колебания
- •Вынужденные колебания
- •Механические волны
- •Задачи для контрольных работ Сложение колебаний
- •Собственные незатухающие колебания
- •Затухающие колебания
- •Вынужденные колебания. Резонанс
- •Механические волны
- •Указания к выполнению контрольной работы
- •Продолжение табл. № 1
- •Продолжение табл. № 2
- •Физика Механика
- •620034, Екатеринбург, ул. Колмогорова, 66
Задача 1.5.
МатериальнаяточканачинаетдвижениепоокружностирадиусомR= 29 см с постоянным касательнымускорениемa0, 5м/с2. Опре- делить пройденный путь s, угловую скорость, угловое ускорение
и времяt, при котором вектор ускорения�образует с вектором ско-
� a
ростиугол=
30°.
Дано:R= 29 см = 0,29 м;a0, 5м/с2;
= 30°;00.
Найти:t,s,,.
Из определения касательного ускорения
ad
dt
найдем скорость точки
t
adtat.
0
Нормальное ускорение в момент времениt
2a2t2
an .R R � � �
Укажем на рисунке направление векторов найдем
a,
an,
a, угол, и
a a2t2a t2
tgn ,
aRa Rt .
Путь, пройденный точкой (см. 1.6)
t a t2Rtg
sdtatdt .
Угловаяскорость
0 2 2
at .
R R
Угловое ускорение
dda.
dt dtR R
Ответ:t 0,58c, 1рад/с,a1,73рад/с2,
R
saRtg0, 43м.
2
Задача 1.6.
Телоброшено
горизонтальнососкоро- Y
стью015м/с�свысотыh=10м.Опреде-
лить скорость, касательноеa,нормаль- υ0
h
ноеanи полное ускоренияa, радиус кривиз- ныRтраектории в момент падения тела.Дано:015м/с;h= 10 м;g= 9,8 м/с2
Найти:,a,an,a,R. i
Движение тела происходитвплоско- 0j
стиХОY.
По осиОХтело движется равномерно с постоянной скоростьюx0. По осиОYтелодвижетсясускорениемсвободногопа-
υx
anφ Xgaτ
υy υ
денияg. В точке падения вектор и модуль скорости
� � � � �
xiyj0igtj,
.
гдеt— время падения тела,y= –gt.
Времяпадения определимизуравнения движениятела вдольосиОУ
gt2
Когдау= 0,h
gt2
2
,t
yh .
2
.
Модуль вектора скорости
.
В любой точке траектории полное ускорение падающего тела
� �a g.
Модули составляющих полного ускорения
agsin,angcos,
и
0
,
где— угол между направлениямивекторов �
cos0;sin gt.
gt g2t
g
Тогдаag
g
,an
g0 0 .
Радиус кривизны траектории в точке падения тела найдем из оп- ределения нормального ускорения
2(22gh)3/ 2
R 0 .
an g0
Ответ:
20, 6м/с,ag
6,8м/с2,
an
g0
(22gh)3/ 2
7,
3м/с2,R 0 58,1м.
g
0
Задача 1.7.
Y
Тело брошено вертикально вверх со ско- ростью0. Определить максимальную высо-
y =h
h
υy=0
g
ту подъема телаhи скоростьпри его па- дении.
Дано:0.
Найти:h,.
υ0
y =0
υ
Тело движется прямолинейно с ускоре- нием свободного паденияg. Для равнопере- менного прямолинейного движения и вы- бранного направления осиOУи начала ко-
ординат зависимость координаты и проекции скорости от времени запишем в виде
⎧
⎪y(t)0t
⎨
gt2
2 (1)
⎪⎩y(t)0gt
В точке максимального подъема телаy=h, аy(th)0, гдеth—
время подъема тела. Тогда,(t)=–gt=0 иt=0.
yh 0 h hg
Из уравнения (1) при t = thмаксимальная высота подъема тела
gt2
g22
hth
0 00.
0h 2
0g 2g22g
Время полетаtполопределяется из равенстваy(tпол)=0,
пол
t gt20,0пол 2
Проекции скорости на осьОУ
t 20.
полg
C0gtпол,
C0
g20,
g 0
где знак минус указывает направление скорости�, противополож-ное осиОУ.
2
Ответ:h0,.
2g 0
