- •Механика
- •Учебно-методическое пособие
- •Длястудентовзаочнойформыобученияи дистанционногообразования
- •Оглавление
- •Математическое введение Чернобородова с.В.
- •Глава 1 кинематика материальной точки Зольников п.П.
- •Глава 2динамика материальной точки Зольников п.П.
- •Глава 3 работа и энергия законы сохранения Першин в.К.
- •Глава 4 момент импульса Фишбейн л.А.
- •Глава 5 элементы механики твердого тела Фишбейн л.А.
- •Глава 6 механические колебания и волны
- •Введение
- •Векторнаяалгебра
- •Сложениевекторов
- •Умножение вектора начисло
- •Вычитаниевекторов
- •Координатывектора
- •Длинавектора
- •Углымеждуосямикоординативектором
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2
- •Задача 1.3
- •Задача 1.4
- •Задача 1.5
- •Задача 1.6
- •Скалярное произведение двухвекторов
- •Физический смысл скалярногопроизведения
- •Задача 1.13 � �
- •Векторное произведение двухвекторов
- •Выражение векторногопроизведения через координатысомножителей
- •Физический смысл векторногопроизведения
- •Вопросы и задания для самопроверки
- •Дифференциальное исчислениефункции действительнойпеременной
- •Дифференцируемость функции.Дифференциал. Производнаяфункции
- •Геометрический смыслпроизводной
- •Геометрический смыслдифференциала
- •Физический смыслпроизводной
- •Производные сложныхфункций
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2
- •Задача 2.3
- •Интегральноеисчисление
- •Первообразнаяфункция
- •Неопределенныйинтеграл
- •Определенныйинтеграл
- •Геометрический смысл определенногоинтеграла
- •Физический смыслинтеграла
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.2
- •4. Дифференциальные уравнения
- •Дифференциальное уравнение, его порядок.Общееичастноерешениедифференциальногоуравнения
- •Дифференциальные уравнения с разделяющимисяпеременными
- •Как нашли решение уравнениямеханических незатухающихколебаний
- •Линейные однородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Линейные неоднородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Задача 4.5
- •Вопросы для самопроверки
- •Тесты математические для электронного экзамена Сложение и вычитание векторов
- •Векторное произведение
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Задачи для контрольных работ Сложение и вычитание векторов, длина вектора
- •Скалярное и векторное произведение векторов
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Глава 1кинематика материальной точки
- •Системаотсчета
- •Траектория, путь,перемещение
- •Вопросы и задания для самопроверки
- •Скорость
- •Ускорение
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2.
- •Задача 1.3.
- •Кинематика равномерного прямолинейного движения
- •Кинематикаравнопеременного прямолинейногодвижения
- •Кинематика равнопеременногодвижения
- •Кинематика равномерного вращательногодвижения
- •Примеры решения задач
- •Задача 1.5.
- •Задача 1.6.
- •Задача 1.7.
- •Вопросы и задания для самопроверки
- •Основные положения
- •Мгновеннаяскорость � �
- •Касательное (тангенциальное)ускорение
- •Нормальноеускорение � � �
- •Тесты � � � для электронного экзамена
- •Задачи для контрольных работ
- •Глава 2 динамика материальной точки
- •Первый закон ньютона.Инерциальные системыотсчета
- •Сила, масса, импульстела
- •Второй законньютона
- •Уравнение движения материальнойточки
- •Третий законньютона
- •Вопросы и задания для самопроверки
- •Принцип относительностигалилея. Неинерциальные системыотсчета
- •Вопросы и задания для самопроверки
- •Силы вмеханике
- •Силы гравитационноговзаимодействия
- •Силытрения
- •Сила сопротивлениясреды
- •Силаупругости
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2.
- •Задача 2.3.
- •Задача2.4
- •Задача 2.6
- •Задача 2.7
- •Задача 2.8
- •Задача 2.9
- •Задача 2.10
- •Задача 2.11
- •Задача 2.12
- •Основные положения
- •Обозначения, используемые в главе 2
- •Тесты для электронного экзамена
- •Задачи для контрольных работ
- •Глава 3 работа и энергия.Законы сохранения
- •3.1. Основные понятия и определения
- •Работасилы.Мощность
- •Работа постоянной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Α α Задача 3.2
- •Задача 3.3
- •Работа переменной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.5
- •Задача 3.6
- •Кинетическаяэнергия
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.8
- •Потенциальнаяэнергия
- •Потенциальная энергия гравитационного взаимодействия двух тел
- •Потенциальная энергия идеальной деформированной пружиныи закрепленного на нейтела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Законы сохранения и измененияэнергии Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.11
- •Задача 3.12
- •Задача 3.13
- •Задача 3.14
- •Закон сохранения и измененияимпульса Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Столкновениятел
- •Абсолютно неупругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.17
- •Абсолютно упругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.19
- •Задача 3.20
- •Задача 3.21
- •Задача 3.22
- •Законизменениямеханическойэнергиисистемы–изменение
- •Потенциальнаяэнергиятела,поднятогонадЗемлей–
- •И�мпульссилы–
- •Обозначения, используемые в главе 3
- •Тесты для электронного экзамена Работа постоянной силы
- •Работа переменной силы
- •Мощность силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Теорема об изменении кинетической энергии (импульс)
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Задачи для контрольных работ Работа постоянной силы
- •Работа переменной силы
- •Мощность
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Глава 4момент импульса.
- •P 4.1. Момент импульса частицы. Момент силы
- •Уравнениемоментов.
- •Уравнение моментов относительно оси. Закон сохранения момента импульсачастицы
- •Вопросы и задания для самопроверки
- •Задача 4.1
- •Примеры решениязадач
- •Движение Луны вокруг Земли
- •Движение электрона вокруг протона
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Момент импульса системычастиц. Закон сохранения момента импульса системы частиц относительно неподвижной (ых) точки и оси
- •12 21 FвнутFвнут,
- •12 21 12 12 � � � � FвнутFвнутFвнутFвнут0
- •12 21 MвнутMвнут0.
- •Вопросы и задания для самопроверки
- •Центр масс системычастиц
- •Прыжок кошки
- •Движение человека
- •Движение человека на лыжах, автомобиля по дороге, поезда по рельсам
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Абсолютно твердое тело.Равнодействующая сил, приложенных к твердомутелу.
- •1 Mравн f
- •Вопросы и задания для самопроверки
- •Задача 4.6
- •Примеры решениязадач
- •Способы определениякоординатцентра тяжести твердоготела
- •Симметрия
- •Разбиение
- •Задача 4.7
- •Дополнение
- •Задача4.8
- •Уравнение моментов
- •Момент импульса системы частиц
- •Центр масс системы частиц
- •Абсолютно твердое тело. Центр тяжести
- •Задачи для контрольных работ
- •Момент импульса частицы. Момент силы. Уравнение моментов
- •Центр масс системы частиц
- •Центр тяжести
- •Глава 5 элементы механики твердого тела
- •Динамика твердоготела
- •Условияравновесиятвердоготела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.2
- •Задача 5.3
- •Поступательное движение твердоготела
- •Вращение твердого тела вокруг неподвижнойоси. Момент инерции твердоготела. Теорема штейнера Дискретная система частиц
- •Непрерывная система частиц
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.5
- •Задача 5.6
- •Задача 5.7
- •Задача 5.8
- •Задача 5.9
- •Закон сохранения момента импульсасистемы твердых тел при их вращательномдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижнойоси.
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •5.7. Плоское движение твердого тела
- •Кинетическая энергия при плоскомдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Способ1
- •Способ2
- •Тесты для электронного экзамена Условия равновесия твердого тела
- •Момент инерции твердого тела. Теорема Штейнера
- •Закон сохранения момента импульса системы твердых тел
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси. Работа внешних сил при повороте твердого тела
- •Задачи для контрольных работ
- •Глава 6механические колебания и волны
- •Понятие колебательногодвижения
- •Кинематика механических гармоническихколебаний
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.2
- •Задача 6.3
- •Динамика механических гармоническихколебаний
- •Пружинныймаятник
- •Физическиймаятник
- •Математическиймаятник
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.5
- •Задача 6.6
- •Задача6.7
- •Задача 6.8
- •Сложение однонаправленныхколебаний одинаковойчастоты
- •Сложениедвухгармоническихколебанийодинаковойчастоты,происходящих вдоль однойпрямой
- •Сложение гармонических колебаний со слегка отличающимисячастотами, происходящими вдоль одной прямой
- •Сложение взаимно перпендикулярных гармоническихколебаний
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной нулю
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Затухающие механическиеколебания
- •Основные параметры, характеризующие затухающие колебания
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.12
- •Задача 6.13
- •Вынужденные механическиеколебания
- •Пояснение
- •Пояснение к искусственному преобразованию
- •Вопросы и задания для самоподготовки
- •Примеры решения задач
- •Задача 6.15
- •Механическиеволны
- •Общиесведенияомеханическихволнах
- •Видыволн
- •Уравнение плоской гармоническойволны
- •Интерференцияволн
- •Стоячиеволны
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.17
- •Задача 6.18
- •Задача 6.19
- •Задача 6.20
- •Задача 6.21
- •Задача 6.22
- •Основные положения Кинематика механических гармонических колебаний
- •Динамика механических гармонических колебаний
- •Кинетическаяипотенциальнаяэнергиипружинногомаятника–
- •Сложение гармонических колебаний
- •Затухающие механические колебания
- •Условныйпериод затухающих механических колебаний–
- •Вынужденные механические колебания
- •Механические волны
- •Разностьфазмеждудвумяточками–
- •Уравнениеплоской гармонической волны–
- •Координаты пучностей и узлов стоячей волны–
- •Обозначения, использованные в главе 6
- •Тесты для электронного экзамена Собственные незатухающие колебания
- •Пружинный маятник
- •Математический маятник
- •Физический маятник
- •Затухающие колебания
- •Вынужденные колебания
- •Механические волны
- •Задачи для контрольных работ Сложение колебаний
- •Собственные незатухающие колебания
- •Затухающие колебания
- •Вынужденные колебания. Резонанс
- •Механические волны
- •Указания к выполнению контрольной работы
- •Продолжение табл. № 1
- •Продолжение табл. № 2
- •Физика Механика
- •620034, Екатеринбург, ул. Колмогорова, 66
Затухающие колебания
Точкасовершает затухающие колебания с частотойи коэффи- циентомзатухания.Найтиамплитудускороститочкикакфункцию времениt, если в моментt0= 0 смещение точких(0) = 0 и проекция ее скоростиvx(0) =v0.
Имеются два затухающих колебания с известными периодамиТ
и коэффициентами затухания:Т1= 0,1 мс,1= 100 с–1иТ2= 10 мс,
2= 10 с–1. Во сколько раз отличаются их логарифмические декре- менты затухания?
Кневесомойпружинеподвесилигрузик,врезультатечегоонарас- тянулась наΔx= 9,8 см. С каким периодом будет колебатьсягрузик,
если ему дать небольшой толчок в вертикальном направлении? Ло- гарифмический декремент затухания=3,1.
Уравнениезатухающихколебанийдановвидех=5е–0,25tsint/2,м.Найти скорость колеблющейся точки в моменты времени: 0,Т, 2Т, 3Ти4Т.
Математический маятник совершает затухающие колебания с ло- гарифмическим декрементом затухания, равным= 0,2. Во сколько раз уменьшится полное ускорение маятника в его крайнем положе- нии за одно колебание?
Амплитуда затухающих колебаний математического маятника за 1 мин уменьшилась вдвое. Во сколько раз она уменьшится за 3 мин?
Математический маятник длиной = 0,5 м, выведенный из по- ложения равновесия, отклонился при первом колебании нах1= 5 см, а при втором — нах2= 4 см. Найти время релаксации.
К вертикально висящей пружине подвешивают груз. При этом пружина удлиняется на 9,8 см. Оттягивая этот груз вниз и отпуская его, заставляют груз совершать колебания. Чему должен быть равен коэффициент затухания, чтобы груз возвращался в положение рав- новесия апериодически?
Чему равен логарифмический декремент затухания математиче- скогомаятника,еслизаt=1минамплитудаколебанийуменьшилась в два раза? Длина маятника = 1м.
Математический маятник длиной = 24,7 см совершает затухаю- щие колебания. Через сколько времени энергия колебаний маятни- ка уменьшится в 9,4 раза? Задачу решить при значениях логарифми- ческого декремента затухания1= 0,01 и2= 1.
К вертикально висящей пружине подвешивают груз. При этом пружина удлиняется наΔ= 9,8 см. Оттягивая этот груз вниз иот-пускаяего,заставляютгрузсовершатьколебания.Чемудолженбыть равен коэффициент затухания, чтобы логарифмический декремент затухания=6?
Через сколько времени энергия колебаний камертона с частотой
= 600 Гц уменьшится вn= 106раз, если логарифмический декре- мент затухания равен 0,0008?
Математический маятник совершает колебания в среде, для ко- торой логарифмический декремент затухания1= 1,5. Каким будет значение2, если коэффициент сопротивления среды увеличить вn= 2 раза? Во сколько раз следует увеличить коэффициент сопро- тивления среды, чтобы колебания сталиневозможными?
Логарифмический декремент затухания математическогомаятни- ка= 0,2. Во сколько раз уменьшится амплитуда колебаний за одно полное колебаниемаятника?
Найти логарифмический декремент затуханияматематическо- го маятника, если за времяt= 1 мин амплитуда колебаний уменьши- лась в два раза. Длина маятника = 1 м.
За времяt= 16,1 с амплитуда колебаний уменьшилась в пять раз.
Найти коэффициент затухания.
За времяt= 16,1 с амплитуда колебаний уменьшилась в пять раз.
За какое времяtамплитуда уменьшится вераз?
Завремяt=100ссистемасовершаетn=100колебаний.Заэтоже время амплитуда колебанийАуменьшается в 2,7 раз. Чему равен ко- эффициентзатухания?
Построить график затухающих колебанийх=е–0,1tsint/4.
0 0
Зависимость координаты свободных затухающих колебаний от времениxA etcos(t). Найти амплитуду и начальную фазуколебаний для начальных условийx(0)0,
v(0)v0.
ПериодзатухающихколебанийT=4с,логарифмическийдекре- ментзатухания=1,6,начальнаяфазаравнанулю.Смещениеточ- киприt=T/4равноx=4,5см.Записатьуравнениедвижения.По-
строить график этого колебательного движения в пределах двух пе- риодов.
Чему равен логарифмический декремент затуханияматемати- ческого маятника, если за одну минуту амплитуда колебаний умень- шилась в два раза? Длина маятника = 2м.
Логарифмический декремент затухания математическогомаятни- ка= 0,2. Найти, во сколько раз уменьшится амплитуда колебаний за одно полное колебаниемаятника.
Маятник теряет за период колебаний 9 % энергии. На сколько процентов его частота отличается от собственной частоты колеба- ний0?
Логарифмический декремент затухания колебаний математическо-гомаятника=0,01.Сколькополныхколебанийдолженсделатьма- ятник, чтобы амплитуда колебаний уменьшилась в двараза?
Определить логарифмический декремент затухания математиче- ского маятника длиной = 50 см, если за времяt= 8 мин он теря- ет 99 % своейэнергии.
Амплитуда затухающих колебаний математического маятника за две минуты уменьшилась вдвое. Во сколько раз она уменьшится за три минуты?
Затухающие колебания точки описываются уравнением
x=A0e–tsint.
Найти скорость точки в моментt= 0.
Затухающие колебания точки описываются уравнением
x=A0e–tsint.
Найти моменты времени, когда точка достигает крайних поло- жений.
Крутильные колебания тел описывается уравнением
=0e–tcost.
Найти угловую скорость тела в моментt= 0.
Крутильные колебания тел описываются уравнением
=0e–tcost.
Найти угловое ускорение тела в моментt= 0.
Крутильные колебания тел описываются уравнением
=0e–tcost.
Найти моменты времени, когда угловая скорость становится мак- симальной.
Некоторая точка совершает затухающие колебания с частотой
=25рад/с.Найтикоэффициентзатухания,есливначальныймо- ментскоростьточкиравнанулю,аеесмещениеизположениярав- новесияв=1,02разаменьшеамплитуды.
Точкасовершает затухающие колебания с частотойи коэффи- циентомзатухания.Найтиамплитудускороститочкикакфункцию времениt, если в моментt0= 0 амплитуда ее смещения равнаA.
