- •Механика
- •Учебно-методическое пособие
- •Длястудентовзаочнойформыобученияи дистанционногообразования
- •Оглавление
- •Математическое введение Чернобородова с.В.
- •Глава 1 кинематика материальной точки Зольников п.П.
- •Глава 2динамика материальной точки Зольников п.П.
- •Глава 3 работа и энергия законы сохранения Першин в.К.
- •Глава 4 момент импульса Фишбейн л.А.
- •Глава 5 элементы механики твердого тела Фишбейн л.А.
- •Глава 6 механические колебания и волны
- •Введение
- •Векторнаяалгебра
- •Сложениевекторов
- •Умножение вектора начисло
- •Вычитаниевекторов
- •Координатывектора
- •Длинавектора
- •Углымеждуосямикоординативектором
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2
- •Задача 1.3
- •Задача 1.4
- •Задача 1.5
- •Задача 1.6
- •Скалярное произведение двухвекторов
- •Физический смысл скалярногопроизведения
- •Задача 1.13 � �
- •Векторное произведение двухвекторов
- •Выражение векторногопроизведения через координатысомножителей
- •Физический смысл векторногопроизведения
- •Вопросы и задания для самопроверки
- •Дифференциальное исчислениефункции действительнойпеременной
- •Дифференцируемость функции.Дифференциал. Производнаяфункции
- •Геометрический смыслпроизводной
- •Геометрический смыслдифференциала
- •Физический смыслпроизводной
- •Производные сложныхфункций
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2
- •Задача 2.3
- •Интегральноеисчисление
- •Первообразнаяфункция
- •Неопределенныйинтеграл
- •Определенныйинтеграл
- •Геометрический смысл определенногоинтеграла
- •Физический смыслинтеграла
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.2
- •4. Дифференциальные уравнения
- •Дифференциальное уравнение, его порядок.Общееичастноерешениедифференциальногоуравнения
- •Дифференциальные уравнения с разделяющимисяпеременными
- •Как нашли решение уравнениямеханических незатухающихколебаний
- •Линейные однородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Линейные неоднородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Задача 4.5
- •Вопросы для самопроверки
- •Тесты математические для электронного экзамена Сложение и вычитание векторов
- •Векторное произведение
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Задачи для контрольных работ Сложение и вычитание векторов, длина вектора
- •Скалярное и векторное произведение векторов
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Глава 1кинематика материальной точки
- •Системаотсчета
- •Траектория, путь,перемещение
- •Вопросы и задания для самопроверки
- •Скорость
- •Ускорение
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2.
- •Задача 1.3.
- •Кинематика равномерного прямолинейного движения
- •Кинематикаравнопеременного прямолинейногодвижения
- •Кинематика равнопеременногодвижения
- •Кинематика равномерного вращательногодвижения
- •Примеры решения задач
- •Задача 1.5.
- •Задача 1.6.
- •Задача 1.7.
- •Вопросы и задания для самопроверки
- •Основные положения
- •Мгновеннаяскорость � �
- •Касательное (тангенциальное)ускорение
- •Нормальноеускорение � � �
- •Тесты � � � для электронного экзамена
- •Задачи для контрольных работ
- •Глава 2 динамика материальной точки
- •Первый закон ньютона.Инерциальные системыотсчета
- •Сила, масса, импульстела
- •Второй законньютона
- •Уравнение движения материальнойточки
- •Третий законньютона
- •Вопросы и задания для самопроверки
- •Принцип относительностигалилея. Неинерциальные системыотсчета
- •Вопросы и задания для самопроверки
- •Силы вмеханике
- •Силы гравитационноговзаимодействия
- •Силытрения
- •Сила сопротивлениясреды
- •Силаупругости
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2.
- •Задача 2.3.
- •Задача2.4
- •Задача 2.6
- •Задача 2.7
- •Задача 2.8
- •Задача 2.9
- •Задача 2.10
- •Задача 2.11
- •Задача 2.12
- •Основные положения
- •Обозначения, используемые в главе 2
- •Тесты для электронного экзамена
- •Задачи для контрольных работ
- •Глава 3 работа и энергия.Законы сохранения
- •3.1. Основные понятия и определения
- •Работасилы.Мощность
- •Работа постоянной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Α α Задача 3.2
- •Задача 3.3
- •Работа переменной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.5
- •Задача 3.6
- •Кинетическаяэнергия
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.8
- •Потенциальнаяэнергия
- •Потенциальная энергия гравитационного взаимодействия двух тел
- •Потенциальная энергия идеальной деформированной пружиныи закрепленного на нейтела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Законы сохранения и измененияэнергии Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.11
- •Задача 3.12
- •Задача 3.13
- •Задача 3.14
- •Закон сохранения и измененияимпульса Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Столкновениятел
- •Абсолютно неупругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.17
- •Абсолютно упругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.19
- •Задача 3.20
- •Задача 3.21
- •Задача 3.22
- •Законизменениямеханическойэнергиисистемы–изменение
- •Потенциальнаяэнергиятела,поднятогонадЗемлей–
- •И�мпульссилы–
- •Обозначения, используемые в главе 3
- •Тесты для электронного экзамена Работа постоянной силы
- •Работа переменной силы
- •Мощность силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Теорема об изменении кинетической энергии (импульс)
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Задачи для контрольных работ Работа постоянной силы
- •Работа переменной силы
- •Мощность
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Глава 4момент импульса.
- •P 4.1. Момент импульса частицы. Момент силы
- •Уравнениемоментов.
- •Уравнение моментов относительно оси. Закон сохранения момента импульсачастицы
- •Вопросы и задания для самопроверки
- •Задача 4.1
- •Примеры решениязадач
- •Движение Луны вокруг Земли
- •Движение электрона вокруг протона
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Момент импульса системычастиц. Закон сохранения момента импульса системы частиц относительно неподвижной (ых) точки и оси
- •12 21 FвнутFвнут,
- •12 21 12 12 � � � � FвнутFвнутFвнутFвнут0
- •12 21 MвнутMвнут0.
- •Вопросы и задания для самопроверки
- •Центр масс системычастиц
- •Прыжок кошки
- •Движение человека
- •Движение человека на лыжах, автомобиля по дороге, поезда по рельсам
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Абсолютно твердое тело.Равнодействующая сил, приложенных к твердомутелу.
- •1 Mравн f
- •Вопросы и задания для самопроверки
- •Задача 4.6
- •Примеры решениязадач
- •Способы определениякоординатцентра тяжести твердоготела
- •Симметрия
- •Разбиение
- •Задача 4.7
- •Дополнение
- •Задача4.8
- •Уравнение моментов
- •Момент импульса системы частиц
- •Центр масс системы частиц
- •Абсолютно твердое тело. Центр тяжести
- •Задачи для контрольных работ
- •Момент импульса частицы. Момент силы. Уравнение моментов
- •Центр масс системы частиц
- •Центр тяжести
- •Глава 5 элементы механики твердого тела
- •Динамика твердоготела
- •Условияравновесиятвердоготела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.2
- •Задача 5.3
- •Поступательное движение твердоготела
- •Вращение твердого тела вокруг неподвижнойоси. Момент инерции твердоготела. Теорема штейнера Дискретная система частиц
- •Непрерывная система частиц
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.5
- •Задача 5.6
- •Задача 5.7
- •Задача 5.8
- •Задача 5.9
- •Закон сохранения момента импульсасистемы твердых тел при их вращательномдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижнойоси.
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •5.7. Плоское движение твердого тела
- •Кинетическая энергия при плоскомдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Способ1
- •Способ2
- •Тесты для электронного экзамена Условия равновесия твердого тела
- •Момент инерции твердого тела. Теорема Штейнера
- •Закон сохранения момента импульса системы твердых тел
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси. Работа внешних сил при повороте твердого тела
- •Задачи для контрольных работ
- •Глава 6механические колебания и волны
- •Понятие колебательногодвижения
- •Кинематика механических гармоническихколебаний
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.2
- •Задача 6.3
- •Динамика механических гармоническихколебаний
- •Пружинныймаятник
- •Физическиймаятник
- •Математическиймаятник
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.5
- •Задача 6.6
- •Задача6.7
- •Задача 6.8
- •Сложение однонаправленныхколебаний одинаковойчастоты
- •Сложениедвухгармоническихколебанийодинаковойчастоты,происходящих вдоль однойпрямой
- •Сложение гармонических колебаний со слегка отличающимисячастотами, происходящими вдоль одной прямой
- •Сложение взаимно перпендикулярных гармоническихколебаний
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной нулю
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Затухающие механическиеколебания
- •Основные параметры, характеризующие затухающие колебания
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.12
- •Задача 6.13
- •Вынужденные механическиеколебания
- •Пояснение
- •Пояснение к искусственному преобразованию
- •Вопросы и задания для самоподготовки
- •Примеры решения задач
- •Задача 6.15
- •Механическиеволны
- •Общиесведенияомеханическихволнах
- •Видыволн
- •Уравнение плоской гармоническойволны
- •Интерференцияволн
- •Стоячиеволны
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.17
- •Задача 6.18
- •Задача 6.19
- •Задача 6.20
- •Задача 6.21
- •Задача 6.22
- •Основные положения Кинематика механических гармонических колебаний
- •Динамика механических гармонических колебаний
- •Кинетическаяипотенциальнаяэнергиипружинногомаятника–
- •Сложение гармонических колебаний
- •Затухающие механические колебания
- •Условныйпериод затухающих механических колебаний–
- •Вынужденные механические колебания
- •Механические волны
- •Разностьфазмеждудвумяточками–
- •Уравнениеплоской гармонической волны–
- •Координаты пучностей и узлов стоячей волны–
- •Обозначения, использованные в главе 6
- •Тесты для электронного экзамена Собственные незатухающие колебания
- •Пружинный маятник
- •Математический маятник
- •Физический маятник
- •Затухающие колебания
- •Вынужденные колебания
- •Механические волны
- •Задачи для контрольных работ Сложение колебаний
- •Собственные незатухающие колебания
- •Затухающие колебания
- •Вынужденные колебания. Резонанс
- •Механические волны
- •Указания к выполнению контрольной работы
- •Продолжение табл. № 1
- •Продолжение табл. № 2
- •Физика Механика
- •620034, Екатеринбург, ул. Колмогорова, 66
Математический маятник
Т6.16Если в неподвижном лифте период колебаний математиче- скогомаятникаравен1с,авдвижущемся—1,1с,тоускорениедви- жения лифтаравно
1)0,12g 2)0,17g 3)0,2g 4)0,24g 5) 0,28g
Т6.17При какой скорости поезда математический маятник дли- ной 11см, подвешенный в вагоне, имеет максимальную амплитуду колебаний, если длина рельсов равна 12,5 м?
1)58,4км/час 2)62,6км/час 3) 64,4км/час
4)67,5км/час 5) 72,3км/час
Т6.18Если частота колебаний математического маятника, уста- новленного на теплоходе, плывущего со скоростью 20 км/час и про- ходящего расстояние 800 км, составляет 1 Гц, то количество колеба- ний маятника, равно
1) 125 · 1032) 130 · 1033) 136 · 1034) 140 · 1035) 144 · 103
Т6.19Еслимаятниковыечасы,идущиеточнонауровнеморя,под- нять навысоту,равную радиусу Земли, то их отставание в сутки со- ставит
1)0ч 2)6ч 3)12ч 4)18ч 5) 20ч
Т6.20ЕслипериодколебаниймаятниканаЗемлеТз,топериодко- лебанийтогожемаятниканаЛунеравен
1)0,8Тз 2)1,5Тз 3)2,2Тз 4) 2,45Тз 5)2,8Тз
Т6.21Периодколебанийматематическогомаятникавракете,под- нимающейся вертикально вверх, стал в два раза меньше, чем наЗем- ле. Считая ускорение свободного падения постоянным и равнымg, определить ускорениеракеты
1)1,5g 2)2g 3)2,4g 4)3g 5) 3,6g
Т6.22Еслиодинматематическиймаятникимеетпериод3с,адру- гой—4с,топериодколебанийматематическогомаятника,длинако-торого равна сумме длин указанных маятников,равен
1)2,6с 2)3,8с 3)4,5с 4)5,0с 5) 5,4с
Физический маятник
Т6.23Еслитонкийобручрадиусом30см,подвешенныйнагвоздь, вбитый горизонтально встену,колеблется в плоскости, параллель- ной стене, то период колебаний такого обручаравен
1)1,2с 2)1,35с 3)1,46с 4)1,55с 5) 1,72с
Т6.24Физический маятник в виде тонкого прямого стержня дли- ной 1,2 м колеблется около горизонтальной оси, перпендикулярной стержнюипроходящейчерезточку,удаленнуюнанекотороерасстоя- ниеdот центра тяжести стержня. При каком значенииdпериод ко- лебаний имеет наименьшеезначение?
1)0,24м 2)0,28м 3)0,32м 4)0,35м 5) 0,38м
Т6.25Еслидискрадиусом24смсовершаетколебательноедвиже- ние около горизонтальной оси, проходящей через середину одного из радиусов, перпендикулярно к плоскости диска, то период колеба- ния такого дискаравен
1)1,2с 2)1,5с 3)1,86с 4)2,3с 5) 2,52с
Т6.26На невесомом стержне длиной 30 см закреплены два оди- наковыхшарика—одинвсерединестержня,другойнаодномизего концов.Еслистерженьсшарикамисовершаетколебательноедвиже- ние относительно горизонтальной оси, проходящей черезсвободный конец стержня, то период колебаний такой системыравен
1)0,54с 2)0,7с 3)0,86с 4)1,0с 5) 1,2с
Затухающие колебания
0
Т6.27Если затухающие колебания материальной точки описыва- ютсяуравнениемxAe0,2tsin(0,5t),м,топриотсутствиисилсо-противления циклическая частота свободных колебанийравна1) 0,488 рад/с 2) 0,51 рад/с 3) 0,521 рад/с 4) 0,530 рад/с 5) 0,539 рад/с
Т6.28Еслиуравнение затухающих колебанийдановвиде
x5e0,25tsint, м, то скорость колеблющейся точки в момент вре-
2
мени, равном четырем периодам, равна
1)0,12м/с 2)0,14м/с 3)0,18м/с 4)0,23м/с 5) 0,3м/с
Т6.29Если амплитуда затухающих колебаний маятника за 5 мин уменьшилась в два раза, то время, за которое амплитуда уменьшит- ся в восемь раз, равно
1)10мин 2)13мин 3)15мин 4)17мин 5) 19 мин
Т6.30Если за 8 мин амплитуда затухающих колебаний маятника уменьшилась в три раза, то коэффициент затухания равен
1) 1,8 ·10–31/с 2) 2,0 ·10–31/с 3) 2,1 · 10–31/с
4) 2,3 ·10–31/с 5) 2,6 ·10–31/с
Т6.31Если амплитуда колебаний маятника длиной 1 м за 10 мин уменьшилась в два раза, то логарифмический декремент затухания равен
1) 1,64·10–3 2) 1,85·10–3 3) 2,18 ·10–3
4) 2,31·10–3 5) 2,5 ·10–3
Т6.32Гиря массойm= 500 г, подвешенная к спиральной пружи- не с коэффициентом упругостиk= 20 Н/м, совершает упругие ко- лебания в некоторой среде. Логарифмический декремент затухания
=0,004.Еслиамплитудаколебанийуменьшиласьвдвараза,точис- ло колебаний, совершенное системой,равно
1)173 2)184 3)190 4)202 5)208
Т6.33Если дифференциальное уравнение движения груза име-
d2x dx
ет видm 4 2x0, то движение будет апериодическимпри
dt2 dt
массе груза, равной
1)0,6кг 2)0,8кг 3)1,2кг 4)1,6кг 5) 2,0кг
Т6.34Если дифференциальное уравнение движения груза имеет
d2x dx
вид
dt26dt50x0, то период затухающих колебаний равен
1)0,981с 2)1,0с 3)1,225с 4)1,446с 5) 1,5с
0
Т6.35Если затухающие колебания пружинного маятника массой 10 кг описываются уравнениемxAe0,8tsin(4t)м, то коэффи-циент упругости равен
1)80Н/м 2) 100 Н/м 3)120Н/м 4)148Н/м 5) 166Н/м
Т6.36Еслизатухающие колебания описываютсяуравнениемx6e0,3tsin(8t0,3),м, топериод затухающих колебанийточкиравен
1)0,578с 2)0,685с 3)0,785с 4)0,842с 5) 0,944с
