- •Механика
- •Учебно-методическое пособие
- •Длястудентовзаочнойформыобученияи дистанционногообразования
- •Оглавление
- •Математическое введение Чернобородова с.В.
- •Глава 1 кинематика материальной точки Зольников п.П.
- •Глава 2динамика материальной точки Зольников п.П.
- •Глава 3 работа и энергия законы сохранения Першин в.К.
- •Глава 4 момент импульса Фишбейн л.А.
- •Глава 5 элементы механики твердого тела Фишбейн л.А.
- •Глава 6 механические колебания и волны
- •Введение
- •Векторнаяалгебра
- •Сложениевекторов
- •Умножение вектора начисло
- •Вычитаниевекторов
- •Координатывектора
- •Длинавектора
- •Углымеждуосямикоординативектором
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2
- •Задача 1.3
- •Задача 1.4
- •Задача 1.5
- •Задача 1.6
- •Скалярное произведение двухвекторов
- •Физический смысл скалярногопроизведения
- •Задача 1.13 � �
- •Векторное произведение двухвекторов
- •Выражение векторногопроизведения через координатысомножителей
- •Физический смысл векторногопроизведения
- •Вопросы и задания для самопроверки
- •Дифференциальное исчислениефункции действительнойпеременной
- •Дифференцируемость функции.Дифференциал. Производнаяфункции
- •Геометрический смыслпроизводной
- •Геометрический смыслдифференциала
- •Физический смыслпроизводной
- •Производные сложныхфункций
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2
- •Задача 2.3
- •Интегральноеисчисление
- •Первообразнаяфункция
- •Неопределенныйинтеграл
- •Определенныйинтеграл
- •Геометрический смысл определенногоинтеграла
- •Физический смыслинтеграла
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.2
- •4. Дифференциальные уравнения
- •Дифференциальное уравнение, его порядок.Общееичастноерешениедифференциальногоуравнения
- •Дифференциальные уравнения с разделяющимисяпеременными
- •Как нашли решение уравнениямеханических незатухающихколебаний
- •Линейные однородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Линейные неоднородные дифференциальные уравнения второго порядка с постояннымикоэффициентами
- •Задача 4.5
- •Вопросы для самопроверки
- •Тесты математические для электронного экзамена Сложение и вычитание векторов
- •Векторное произведение
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Задачи для контрольных работ Сложение и вычитание векторов, длина вектора
- •Скалярное и векторное произведение векторов
- •Дифференциальное исчисление
- •Интегральное исчисление
- •Глава 1кинематика материальной точки
- •Системаотсчета
- •Траектория, путь,перемещение
- •Вопросы и задания для самопроверки
- •Скорость
- •Ускорение
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 1.2.
- •Задача 1.3.
- •Кинематика равномерного прямолинейного движения
- •Кинематикаравнопеременного прямолинейногодвижения
- •Кинематика равнопеременногодвижения
- •Кинематика равномерного вращательногодвижения
- •Примеры решения задач
- •Задача 1.5.
- •Задача 1.6.
- •Задача 1.7.
- •Вопросы и задания для самопроверки
- •Основные положения
- •Мгновеннаяскорость � �
- •Касательное (тангенциальное)ускорение
- •Нормальноеускорение � � �
- •Тесты � � � для электронного экзамена
- •Задачи для контрольных работ
- •Глава 2 динамика материальной точки
- •Первый закон ньютона.Инерциальные системыотсчета
- •Сила, масса, импульстела
- •Второй законньютона
- •Уравнение движения материальнойточки
- •Третий законньютона
- •Вопросы и задания для самопроверки
- •Принцип относительностигалилея. Неинерциальные системыотсчета
- •Вопросы и задания для самопроверки
- •Силы вмеханике
- •Силы гравитационноговзаимодействия
- •Силытрения
- •Сила сопротивлениясреды
- •Силаупругости
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 2.2.
- •Задача 2.3.
- •Задача2.4
- •Задача 2.6
- •Задача 2.7
- •Задача 2.8
- •Задача 2.9
- •Задача 2.10
- •Задача 2.11
- •Задача 2.12
- •Основные положения
- •Обозначения, используемые в главе 2
- •Тесты для электронного экзамена
- •Задачи для контрольных работ
- •Глава 3 работа и энергия.Законы сохранения
- •3.1. Основные понятия и определения
- •Работасилы.Мощность
- •Работа постоянной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Α α Задача 3.2
- •Задача 3.3
- •Работа переменной силы
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.5
- •Задача 3.6
- •Кинетическаяэнергия
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.8
- •Потенциальнаяэнергия
- •Потенциальная энергия гравитационного взаимодействия двух тел
- •Потенциальная энергия идеальной деформированной пружиныи закрепленного на нейтела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Законы сохранения и измененияэнергии Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.11
- •Задача 3.12
- •Задача 3.13
- •Задача 3.14
- •Закон сохранения и измененияимпульса Замкнутая система
- •Незамкнутая система
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Столкновениятел
- •Абсолютно неупругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.17
- •Абсолютно упругий удар
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 3.19
- •Задача 3.20
- •Задача 3.21
- •Задача 3.22
- •Законизменениямеханическойэнергиисистемы–изменение
- •Потенциальнаяэнергиятела,поднятогонадЗемлей–
- •И�мпульссилы–
- •Обозначения, используемые в главе 3
- •Тесты для электронного экзамена Работа постоянной силы
- •Работа переменной силы
- •Мощность силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Теорема об изменении кинетической энергии (импульс)
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Задачи для контрольных работ Работа постоянной силы
- •Работа переменной силы
- •Мощность
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии
- •Потенциальная энергия
- •Законы сохранения и изменения энергии
- •Импульс
- •Закон изменения и сохранения импульса
- •Абсолютно неупругий удар
- •Абсолютно упругий удар
- •Глава 4момент импульса.
- •P 4.1. Момент импульса частицы. Момент силы
- •Уравнениемоментов.
- •Уравнение моментов относительно оси. Закон сохранения момента импульсачастицы
- •Вопросы и задания для самопроверки
- •Задача 4.1
- •Примеры решениязадач
- •Движение Луны вокруг Земли
- •Движение электрона вокруг протона
- •Задача 4.2
- •Задача 4.3
- •Задача 4.4
- •Момент импульса системычастиц. Закон сохранения момента импульса системы частиц относительно неподвижной (ых) точки и оси
- •12 21 FвнутFвнут,
- •12 21 12 12 � � � � FвнутFвнутFвнутFвнут0
- •12 21 MвнутMвнут0.
- •Вопросы и задания для самопроверки
- •Центр масс системычастиц
- •Прыжок кошки
- •Движение человека
- •Движение человека на лыжах, автомобиля по дороге, поезда по рельсам
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Абсолютно твердое тело.Равнодействующая сил, приложенных к твердомутелу.
- •1 Mравн f
- •Вопросы и задания для самопроверки
- •Задача 4.6
- •Примеры решениязадач
- •Способы определениякоординатцентра тяжести твердоготела
- •Симметрия
- •Разбиение
- •Задача 4.7
- •Дополнение
- •Задача4.8
- •Уравнение моментов
- •Момент импульса системы частиц
- •Центр масс системы частиц
- •Абсолютно твердое тело. Центр тяжести
- •Задачи для контрольных работ
- •Момент импульса частицы. Момент силы. Уравнение моментов
- •Центр масс системы частиц
- •Центр тяжести
- •Глава 5 элементы механики твердого тела
- •Динамика твердоготела
- •Условияравновесиятвердоготела
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.2
- •Задача 5.3
- •Поступательное движение твердоготела
- •Вращение твердого тела вокруг неподвижнойоси. Момент инерции твердоготела. Теорема штейнера Дискретная система частиц
- •Непрерывная система частиц
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 5.5
- •Задача 5.6
- •Задача 5.7
- •Задача 5.8
- •Задача 5.9
- •Закон сохранения момента импульсасистемы твердых тел при их вращательномдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижнойоси.
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •5.7. Плоское движение твердого тела
- •Кинетическая энергия при плоскомдвижении
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Способ1
- •Способ2
- •Тесты для электронного экзамена Условия равновесия твердого тела
- •Момент инерции твердого тела. Теорема Штейнера
- •Закон сохранения момента импульса системы твердых тел
- •Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси. Работа внешних сил при повороте твердого тела
- •Задачи для контрольных работ
- •Глава 6механические колебания и волны
- •Понятие колебательногодвижения
- •Кинематика механических гармоническихколебаний
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.2
- •Задача 6.3
- •Динамика механических гармоническихколебаний
- •Пружинныймаятник
- •Физическиймаятник
- •Математическиймаятник
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.5
- •Задача 6.6
- •Задача6.7
- •Задача 6.8
- •Сложение однонаправленныхколебаний одинаковойчастоты
- •Сложениедвухгармоническихколебанийодинаковойчастоты,происходящих вдоль однойпрямой
- •Сложение гармонических колебаний со слегка отличающимисячастотами, происходящими вдоль одной прямой
- •Сложение взаимно перпендикулярных гармоническихколебаний
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной нулю
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Сложение двух взаимно перпендикулярных гармонических колебанийодинаковой частоты при разности фаз, равной
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Затухающие механическиеколебания
- •Основные параметры, характеризующие затухающие колебания
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.12
- •Задача 6.13
- •Вынужденные механическиеколебания
- •Пояснение
- •Пояснение к искусственному преобразованию
- •Вопросы и задания для самоподготовки
- •Примеры решения задач
- •Задача 6.15
- •Механическиеволны
- •Общиесведенияомеханическихволнах
- •Видыволн
- •Уравнение плоской гармоническойволны
- •Интерференцияволн
- •Стоячиеволны
- •Вопросы и задания для самопроверки
- •Примеры решения задач
- •Задача 6.17
- •Задача 6.18
- •Задача 6.19
- •Задача 6.20
- •Задача 6.21
- •Задача 6.22
- •Основные положения Кинематика механических гармонических колебаний
- •Динамика механических гармонических колебаний
- •Кинетическаяипотенциальнаяэнергиипружинногомаятника–
- •Сложение гармонических колебаний
- •Затухающие механические колебания
- •Условныйпериод затухающих механических колебаний–
- •Вынужденные механические колебания
- •Механические волны
- •Разностьфазмеждудвумяточками–
- •Уравнениеплоской гармонической волны–
- •Координаты пучностей и узлов стоячей волны–
- •Обозначения, использованные в главе 6
- •Тесты для электронного экзамена Собственные незатухающие колебания
- •Пружинный маятник
- •Математический маятник
- •Физический маятник
- •Затухающие колебания
- •Вынужденные колебания
- •Механические волны
- •Задачи для контрольных работ Сложение колебаний
- •Собственные незатухающие колебания
- •Затухающие колебания
- •Вынужденные колебания. Резонанс
- •Механические волны
- •Указания к выполнению контрольной работы
- •Продолжение табл. № 1
- •Продолжение табл. № 2
- •Физика Механика
- •620034, Екатеринбург, ул. Колмогорова, 66
Производные сложныхфункций
Приведенные
в предыдущем параграфе правила и формулы
диф- ференцированияпозволяютнаходитьпроизводныеотфункцийтоль-
ко в самых простых случаях. Знания этих
правил и формул недоста-
точнодлядифференцированияфункцийболеесложноговида,таких,
например,какy(t)=
или y (t) = 3 cos2t. В подобных случа-
ях пользуются более общими формулами дифференцирования, осно- ванными на теореме о производной функции от функции.
Пустьyестьфункцияотu:y=f(u),гдеuвсвоюочередьфункция от аргументаx:u=(x); в таком случаеговорят,что y есть функция от функции. Очевидно, можно записатьy=f((x)). Еслисуществу-
ютпроизводныеfu=fuиuxx,тосуществуетипроизвод-
ная отyпоx, причем имеет место равенство
yfuux. (2.17)
Индексыуказывают,покакойпеременнойпроизводитсядиффе- ренцирование.Покажем,какпользоватьсяформулой(2.17).
Пример1.Найтиy,еслиyx25x78.
Полагаяux25x7,имеемyu8.Поформуле(3)y8u72x5,
или,окончательноy8x25x772x5.
Пример 2.Найтиy, еслиylnx37x2.
Принимая в данном случае заu=x37x2и пользуясь форму-
лой (10), получаем
y
3x27
.
x37x2
Многие физические величины определяются как производные
по времени от других физических величин. Например,скорость�—
� v
первая производная радиус-вектораrпо времениt. Обозначается это
следующимобразом:
�
v�dr
или���.. (2.18)
dt v rtr
Ускорение�—первая производная скорости�по времени t
�
a �adv
v
или���.. (2.19)
dt a vt v
Сила тока I—первая производная заряда q по времени t(или, что то же самое, скорость изменения заряда)
Idq
dt
илиIqtq.. (2.20)
Электродвижущая сила индукции— взятая со знаком «минус»пер-вая производная магнитного потока Ф по времени
dФили=–ФФ·. (2.21)
dt t
Вопросы и задания для самопроверки
Дайте определение дифференциала функции вточке.
Дайте определение производнойфункции.
Поясните геометрический смысл производной и дифферен- циала.
Поясните механический смыслпроизводной.
Пользуясьтаблицейпроизводныхиосновнымиправиламидиф- ференцирования (формулами 2.12–2.19), найдите производные от следующихфункций:
1)y9x22x3,
2)y6x33x4,
y5xlnx3sinx,
y7lnx32cosx,
yx3lnx,
yx2sinx,
ytgx3cosx,
8)y= ,
9)y= 3cos 2x.
Приведите примеры физических величин, которые являются производными от других физических величин по времени.
Примеры решения задач
Задача 2.1
Радиус-век�торматериал�ьнойточкименяетсясовременемпозако-
� �
нуr(t) = 2t2i+ 3tj+ 4k, м. Найти: 1) зависимость скорости точ-
ки от времени�(t), 2) зависимость модуля скорости от времениv(t),
v �
3) зависимость ускорения точки от времениa(t), 4) зависимость мо- дуля ускорения от времениa(t), 5) значения скорости и ускорения в
моментвремениt=�1сотначал�адвижения.
� �
Дано:r(t) = 2t2i+ 3tj+ 4k, м;t= 1 c.
Найти:�(t),v(t),�( ),at,v,a.
v � at �
Скоростьv— первая производная радиус-вектораrповреме-
ни. Поэтому для нахождения зависимости�(t) достаточно продиф-
v � �
ференцировать по времени заданную зависимостьrr(t):
�
dr
� � � � � � � � �
2
v(t) =2ti3tj4k =4ti3j0k=4ti3j,м/c. (1)dt t
Модуль вектора определяется по теореме Пифагора как корень из суммы квадратов компонент вектора. Для модуляскорости
v .
Из уравнения (1) имеемvx= 4tм/c,vy= 3 м/c,vz= 0 м/c. Получаем
v(t)= = ,м/с (2)
Таккак ускорением�является первая производная скорости�
a � v
v
по времени, то для получения зависимостиaотtнеобходимо про- дифференцировать по времени полученную выше зависимость�(t) — выражение (1). Тогда
�
� dv
� �� � �
2
adt=4ti3jt=4i0j=4i,м/с. (3)
Модульускоренияопределяется
соотношениемa .
Как видно из зависимости (3),ax= 4 м/c2,ay= 0 м/c2,az= 0 м/c2. По- этому
a =4м/с2. (4)
Значения скорости и ускорения в момент времениt= 1 с от на- чала движения легко получить, подставив значение времениt= 1 св
выражения (2) и (4).Тогдаv(1) = 5м/c,a(1) =4м/c2. � �
v
Ответ:зависимостьскороститочкиотвремени�(t)=4ti3j,м/c;
зависимостьмодуляскоростиотвремениv(t)=�
, м/с; за-
a t
висимость ускорения точки от времени�()=4i,м/с2;зависимостьмодуля ускорения от времениat= 4м/с2;значения скорости иус-корения в момент времениt= 1 с от начала движения:v(1) = 5м/c,a(1) = 4м/c2.
