- •1 Основные параметры газовой среды.
- •2. Некоторые основные понятия аэрогидромеханики
- •3. Уравнение неразрывности
- •4. Уравнения количества движения
- •5. Уравнения движения в гидромеханической форме. Уравнения и.С. Громеко.
- •7.Различные формы уравнения энергии.
- •8. Параметры течения в произвольном сечении трубки тока.
- •9. Изменение скорости вдоль трубки тока. Приведенный расход газа.
- •10.Некоторые газодинамические функции одномерного адиабатического потока.
- •11. Особенности расчета одномерного потока реального газа
- •15 Теорема н. Е. Жуковского.
- •17 Плоский сверхзвуковой поток
- •19. Пересечение и отражение волн разрежения
- •21. Уравнения косого скачка
- •22 Ударная поляра
- •23. Изменение энтропии в скачке
- •24. Потери в скачках уплотнения
- •25. Построение процесса в I-s диаграмме. Скачки уплотнения в реальном газе
- •26. Пересечение скачков
- •28.Отражение скачков.
- •29. Взаимодействие скачка и волны разрежения.
- •30. Конические скачки уплотнения.
- •31 Вопрос. Скачки конденсации, тепловые скачки.
- •32. Температура торможения в вязкой жидкости
- •34. Одномерное течение газа при наличии трения. Основные уравнения
- •36 Потери на трение в цилиндрической трубе (опытные данные).
- •38 Условные толщины и интегральное соотношение для пограничного слоя.
- •40. Расчет ламинарного пограничного слоя при наличии градиента давления
- •45. Сопротивление плохо обтекаемых тел в потоке газа
- •46 Движение газа в криволинейных каналах
- •47. Вращающиеся потоки вязкого газа.
- •48. Суживающиеся сопла
- •49 Суживающееся сопло при переменном режиме
- •Истечение газа из отверстия с острой кромкой. Второе критическое отношение давлений.
- •52.Плоское сопло Лаваля при нерасчетных условиях.
- •53. Конические сопла Лаваля в нерасчетных условиях. Реактивная сила.
- •54. Сверхзвуковое сопло с косым срезом
- •55. Расчет сверхзвукового сопла
- •56. Дозвуковые диффузоры
- •60. Ступень эжектора при переменных режимах; предельный режим
- •61 Выбор геометрических параметров ступени эжектора.
31 Вопрос. Скачки конденсации, тепловые скачки.
Основная идея теории В. А. Андреева и С. 3. Беленького — исследование прямых и косых скачков конденсации как тепловых скачков. Эта теория развита ими применительно к воздуху с небольшим содержанием водяных паров. Изменение массы газа в процессе конденсации считается пренебрежимо малым. Та же теория была применена М. Е. Дейчем [15] для влажного пара. В обоих случаях считается, что при прохождении через скачок полная энтальпия меняется. В уравнении энергии вместо плотности паровой фазы вводится плотность влажного пара. В результате этих допущений были получены простые зависимости между параметрами пара перед скачком и за ним.
Следует особо подчеркнуть, что сейчас анализируются свойства только теплового скачка, а не процессов горения или конденсации в целом. Для анализа задачи в целом необходимы дополнительные сведения о процессе. Рассмотрим скачок конденсации в предположении 1) пар перед скачком переохлажден и не содержит капелек жидкости 2) насыщенный пар и мелкие капельки жидкости за скачком находятся в тепловом равновесии 3) скорости капелек жидкости за скачком равны скорости пара. Общее между тепловым скачком и скачком конденсации состоит Б том, что в обоих случаях к потоку подводится теплота. Однако в тепловом скачке эта теплота подводится извне, и поэтому энтальпия торможения после скачка возрастает. В скачке конденсации теплота выделяется при конденсации части текущего пара и поэтому полная энергия потока до и после скачка остается постоянной. Кроме того, различие состоит в том, что после скачка давление и температура связаны условием фазового равновесия. Поэтому количество выделившейся при конденсации теплоты не может быть установлено произвольно, а связано с интенсивностью скачка. Следует различать конденсационные скачки в одно-, двух- и многокомпонентных средах. В последнем случае в потоке неконденсирующегося газа (или смеси газов) присутствуют пары конденсирующейся среды. Например, пары воды в сверхзвуковом потоке воздуха при определенных условиях спонтанно конденсируются к потоку воздуха подводится скрытая теплота парообразования и его полная энергия (энтальпия торможения) возрастает. Такие скачки иногда называют тепловым и Ч Скачки конденсации в однокомпонентной среде не вызывают изменения энтальпии торможения. Полученные общие соотношения применимы к любым неадиабатическим скачкам давления вне зависимости от механизма выделения тепла. Мы видели, что в рассмотренных выше двух случаях распространения фронта пламени непосредственно тепловой скачок (т. е. зона горения) представлял как при детонации, так,и при нормальном горении скачок разрежения в дозвуковом течении. Нетрудно указать и случай теплового скачка сжатия в сверхзвуковом потоке. Мы имеем в виду хорошо известные скачки конденсации, сопровождающейся переходом от большей сверхзвуковой скорости к меньшей, но всё ещё сверхзвуковой скорости. И в этом случае приведённые выше уравнения и выводы остаются справедливыми.
32. Температура торможения в вязкой жидкости
При рассмотрении движения реальной (вязкой) жидкости необходимо учитывать диссипацию (рассеяние) энергии, вызываемую внутренним трением и теплопроводностью, т. е. термодинамической необратимостью процесса.
Движение
вязкой жидкости описывается системой
уравнений сохранения: расхода,
количества движения и энергии. Уравнение
неразрывности
,
как уже указывалось, справедливо и для
вязкой жидкости. Уравнения количества
движения в форме Эйлера должны быть
дополнены членами, учитывающими
влияние вязкости.
При рассмотрении движения вязкой жидкости с неравномерным распределением скоростей в потоке условие эквивалентности теплоты трения и работы трения не выполняется. В таком потоке только часть работы трения превращается в теплоту, а другая часть вызывает чисто механический эффект: перестройку поля скоростей, в процессе которой происходит перераспределение кинетической энергии между частицами жидкости. Отсюда вытекает, что различные частицы приобретают разное количество теплоты трения и имеют разный запас полной энергии. Следовательно, условие i0 = const в общем случае не является интегралом уравнения энергии для всей массы жидкости, так как в потоке образуется местное перераспределение энергии.
