- •Тема 1. Электрическое поле в вакууме §1 Заряд и поле. Закон Кулона. Напряженность поля
- •1.1. Понятие электрического заряда и его свойства.
- •1.1. Понятие электрического заряда и его свойства
- •Стеклянная и эбонитовая палочки
- •Шелк, шерсть
- •Шелк, шерсть
- •1.2. Закон Кулона
- •1.3. Электрическое поле и его характеристики
- •Свойства поля
- •Напряженность поля
- •Силовые линии
- •Контрольные вопросы к §1.
- •§2 Работа электрического поля по перемещению заряда. Потенциал. Потенциальный характер электростатического поля
- •2.1. Вывод формулы для расчета работы сил поля при перемещении заряда
- •2.2. Понятие потенциала, потенциальный характер электростатического поля
- •2.3. Связь между напряженностью и потенциалом
- •2.4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.
- •Контрольные вопросы к §2
- •Тесты к теме 1. Электрическое поле в вакууме
- •Тема 2. Проводники и диэлектрики в электрическом поле
- •§3 Проводники в электрическом поле. Диэлектрики. Поляризация диэлектриков. Векторы поляризации и электростатической индукции
- •3.1. Проводники в электрическом поле
- •3.2. Диэлектрики
- •3.3. Векторы поляризации и электростатической индукции
- •Контрольные вопросы к §3
- •§4 Электроемкость. Конденсаторы и их применение. Энергия и плотность энергии заряженного конденсатора
- •4.1 Электроемкость.
- •4.2 Конденсаторы и их применение.
- •4.3 Энергия и плотность энергии заряженного конденсатора.
- •4.1. Электроемкость
- •4.2. Конденсаторы и их применение
- •4.3. Энергия и плотность энергии заряженного конденсатора
- •Контрольные вопросы к §4
- •Тесты к теме 2. Проводники и диэлектрики в электрическом поле
- •Тема 3. Электрический ток в различных средах
- •§7 Работа и мощность электрического тока. Закон Джоуля – Ленца. Разветвление цепи. Правила Кирхгофа
- •§8 Понятие о зонной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение
- •§10 Процессы ионизации и рекомбинации. Самостоятельный и несамостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов
- •§5 Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи
- •5.1. Основные характеристики электрического тока
- •5.2. Закон Ома для участка цепи
- •5.3. Сторонние силы. Закон Ома для полной цепи
- •Контрольные вопросы к §5
- •§6 Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме
- •6.1 Сопротивление проводников.
- •6.2 Сверхпроводимость.
- •6.3 Электронная теория проводимости металлов.
- •6.1. Сопротивление проводников
- •6.2. Сверхпроводимость
- •6.3. Электронная теория проводимости металлов
- •6.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Сверхпроводники 1-го и 2-го рода.
- •Эффект Мейснера.
- •Гроб Мухаммеда.
- •Теория бкш.
- •Математический аппарат.
- •Применение явления сверхпроводимости.
- •Контрольные вопросы к §6
- •§7 Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа
- •7.1 Работа и мощность электрического тока. Закон Джоуля - Ленца
- •7.2 Разветвление цепи
- •7.3 Правила Кирхгофа
- •7.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •7.2. Разветвление цепи
- •7.3. Правила Кирхгофа
- •Контрольные вопросы к §7
- •§8 Понятие зонной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение
- •8.1 Понятие о зонной теории проводимости
- •8.2 Контактная разность потенциалов
- •8.3 Термоэлектрические явления и их применение
- •8.1. Понятие о зонной теории проводимости
- •8.2. Контактная разность потенциалов
- •8.3. Термоэлектрические явления и их применение
- •Контрольные вопросы к §8
- •§9 Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза
- •9.1. Электролитическая диссоциация
- •9.2. Проводимость электролитов
- •9.3. Законы Фарадея для электролиза
- •9.4. Определение заряда иона
- •9.5. Техническое применение электролиза
- •Контрольные вопросы к §9
- •§10 Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов
- •Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •Виды разрядов. Применение газовых разрядов
- •10.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •10.2. Виды разрядов. Применение газовых разрядов
- •Контрольные вопросы к §10
- •§ 11. Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение.
- •Термоэлектронная эмиссия
- •Электронные лампы и их применение
- •11.1. Понятие о плазме
- •11.2. Термоэлектронная эмиссия
- •11.3. Электронные лампы и их применение
- •Контрольные вопросы к § 11.
- •§ 12. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы
- •Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •Полупроводниковые диоды и транзисторы
- •12.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •12.2. Полупроводниковые диоды и транзисторы
- •Контрольные вопросы к § 12.
- •Тесты к теме 3. Электрический ток в различных средах
- •Тема 4. Магнитное поле в вакууме и веществе
- •13.1 Взаимодействие токов
- •13.2. Магнитное поле. Индукция и напряженность магнитного поля
- •13.3. Виток с током в магнитном поле
- •13.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.
- •Контрольные вопросы к §13
- •14.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток
- •14.2. Сила Ампера
- •14.3. Работа по перемещению проводника с током в магнитном поле.
- •14.4. Сила Лоренца
- •14.5.Определение удельного заряда электрона
- •Контрольные вопросы к § 14.
- •§ 15.Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления
- •Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость
- •Магнитомеханические явления
- •15.1. Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость
- •15.2. Магнитомеханические явления
- •Контрольные вопросы к § 15.
- •§ 16. Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •Магнитные материалы и их применение
- •16.1. Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •16.2. Магнитный гистерезис. Работы а.Г. Столетова. Точка Кюри
- •16.3. Магнитные материалы и их применение
- •Контрольные вопросы к § 16.
- •Тесты к теме 4. Магнитное поле в вакууме и веществе
- •Глава 5. Электромагнитные явления
- •§17. Электромагнитная индукция. Закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля.
- •17.1. Электромагнитная индукция
- •17.2. Самоиндукция и взаимоиндукция
- •17.3. Энергия и плотность энергии магнитного поля
- •Контрольные вопросы к § 17.
- •18.1. Получение переменной эдс
- •18.2. Сопротивление, индуктивность и емкость в цепи переменного тока. Закон Ома для цепей переменного тока
- •4. Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
- •18.3. Резонанс в последовательной и параллельной цепи
- •18.4. Проблема передачи электроэнергии на расстояние, трансформатор
- •Контрольные вопросы к § 18.
- •Электрический колебательный контур. Собственные колебания. Формула Томсона.
- •Затухающие колебания. Вынужденные колебания в контуре. Резонанс.
- •Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе.
- •19.1. Электрический колебательный контур. Собственные колебания. Формула Томсона
- •19.2. Затухающие колебания. Вынужденные колебания в контуре. Резонанс
- •19.3. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе
- •Контрольные вопросы к § 19.
- •§ 20.Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Излучение электромагнитных волн.
- •Опыты Герца, вибратор Герца.
- •Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации.
- •20.1. Излучение электромагнитных волн
- •20.2. Опыты Герца, вибратор Герца
- •20.3. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Контрольные вопросы к § 20.
- •Тесты к теме 5. Электромагнитные явления
4. Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
Схема:
Рис. 173.
Запишем второй закон Кирхгофа для этой цепи. Результирующее напряжение равно:
U=Ur+UL+UC. (139)
Ток i=ir=iL=iC. Опорный вектор – ток.
Рис. 174.
Из векторной диаграммы следует:
U2=U2r+(UL+UC)2 или
(Ir)2=(Ir)2+I2(XL-XC)2,
r2=r2+(XL-XC)=Z, тогда
(140)
- закон Ома для цепи переменного тока, содержащей активное сопротивление, индуктивность и емкость.
18.3. Резонанс в последовательной и параллельной цепи
Рассмотрим схему последовательного соединения активного сопротивления, индуктивности и емкости в цепи переменного тока (Рис. 175).
Определим угол сдвига фаз:
(141)
XL>XC – в цепи преобладает индуктивная нагрузка (>0); напряжение опережает ток по фазе.
XL<XC – в цепи преобладает емкостная нагрузка (<0); напряжение отстает от тока по фазе.
XL=XC – емкостная и индуктивная нагрузки равны (=0); напряжение совпадает с током по фазе. При этом из закона Ома следует, что ток в цепи будет максимальным (резонанс напряжений).
Условия резонанса напряжений:
XL=XC
(142)
Резонанса можно достичь двумя способами:
Параметрический резонанс (меняются значения L и C).
Частотный резонанс (меняется частота колебаний):
(143)
тогда период:
(144)
Параллельный резонанс
Схема:
Рис. 175.
Векторная диаграмма:
Рис. 176.
Запишем второй закон Кирхгофа для этой цепи.
Ток в неразветвленной части цепи равен:
i=iC+iL,r. (145)
Напряжение:
UC=UL+Ur. (146)
Опорный вектор – напряжение.
Из векторной диаграммы видно:
- проводимости всей цепи и её элементов.
(147)
- закон Ома для параллельной цепи, содержащей сопротивление, индуктивность и емкость.
Определим угол сдвига фаз:
(148)
bL>bC – проводимость индуктивной ветви больше проводимости емкостной (<0). Напряжение опережает ток по фазе.
bL<bC – проводимость индуктивной ветви меньше проводимости емкостной (>0). Напряжение отстает от тока по фазе.
bL=bC – проводимости равны. (=0). Напряжение совпадает с током по фазе. При этом из закона Ома следует, что ток в цепи будет минимальным (резонанс токов).
Условие резонанса токов:
, (149)
. (150)
18.4. Проблема передачи электроэнергии на расстояние, трансформатор
Для передачи электроэнергии на большие расстояния от источника к потребителю служат линии электропередач (ЛЭП). При этом приходится решать ряд научно-технических задач, одна из которых состоит в уменьшении потерь электроэнергии при ее передаче к потребителю. Эта задача решается путем трансформации напряжения. Трансформация напряжения заключается в изменении величины передаваемого напряжения без существенного изменения мощности электрического тока. Для этой цели служит устройство, называемое трансформатором.
В основе работы трансформатора лежит явление электромагнитной индукции. Простейший трансформатор состоит из сердечника и двух намотанных на него обмоток (катушек) – первичной и вторичной (Рис. 177). Сердечник, в свою очередь, состоит из тонких плотно склеенных между собой листов электротехнической стали и служит для передачи магнитного потока от первичной катушки к вторичной. Электротехническая сталь обладает способностью к быстрому перемагничиванию без насыщения и называется магнитомягкой.
Рис. 177.
Согласно закону электромагнитной индукции Фарадея ЭДС индукции Е1 и Е2, создаваемые в первичной и вторичной катушках выражаются формулами:
где w1 и w2 – число витков в первичной и вторичной катушках трансформатора соответственно.
По второму правилу Кирхгофа напряжения на первичной и вторичной обмотках
Тогда получим:
(151)
- коэффициент трансформации.
В зависимости от величины К12 различают повышающие и понижающие трансформаторы. Например, при передаче электроэнергии от электростанции в ЛЭП используются повышающие трансформаторы и напряжения в ЛЭП составляют тысячи и миллионы вольт (отсюда и названия ЛЭП – 500 и т.д.) (Рис. 177). Наоборот, т.к. бытовые приборы (потребители электроэнергии) рассчитаны на низкое напряжение (220 В) необходимо последовательно понизить высокое напряжение в ЛЭП через сеть распределительных подстанций районного и местного значения до напряжения, используемого потребителями электроэнергии.
Рис. 178.
