- •Тема 1. Электрическое поле в вакууме §1 Заряд и поле. Закон Кулона. Напряженность поля
- •1.1. Понятие электрического заряда и его свойства.
- •1.1. Понятие электрического заряда и его свойства
- •Стеклянная и эбонитовая палочки
- •Шелк, шерсть
- •Шелк, шерсть
- •1.2. Закон Кулона
- •1.3. Электрическое поле и его характеристики
- •Свойства поля
- •Напряженность поля
- •Силовые линии
- •Контрольные вопросы к §1.
- •§2 Работа электрического поля по перемещению заряда. Потенциал. Потенциальный характер электростатического поля
- •2.1. Вывод формулы для расчета работы сил поля при перемещении заряда
- •2.2. Понятие потенциала, потенциальный характер электростатического поля
- •2.3. Связь между напряженностью и потенциалом
- •2.4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.
- •Контрольные вопросы к §2
- •Тесты к теме 1. Электрическое поле в вакууме
- •Тема 2. Проводники и диэлектрики в электрическом поле
- •§3 Проводники в электрическом поле. Диэлектрики. Поляризация диэлектриков. Векторы поляризации и электростатической индукции
- •3.1. Проводники в электрическом поле
- •3.2. Диэлектрики
- •3.3. Векторы поляризации и электростатической индукции
- •Контрольные вопросы к §3
- •§4 Электроемкость. Конденсаторы и их применение. Энергия и плотность энергии заряженного конденсатора
- •4.1 Электроемкость.
- •4.2 Конденсаторы и их применение.
- •4.3 Энергия и плотность энергии заряженного конденсатора.
- •4.1. Электроемкость
- •4.2. Конденсаторы и их применение
- •4.3. Энергия и плотность энергии заряженного конденсатора
- •Контрольные вопросы к §4
- •Тесты к теме 2. Проводники и диэлектрики в электрическом поле
- •Тема 3. Электрический ток в различных средах
- •§7 Работа и мощность электрического тока. Закон Джоуля – Ленца. Разветвление цепи. Правила Кирхгофа
- •§8 Понятие о зонной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение
- •§10 Процессы ионизации и рекомбинации. Самостоятельный и несамостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов
- •§5 Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи
- •5.1. Основные характеристики электрического тока
- •5.2. Закон Ома для участка цепи
- •5.3. Сторонние силы. Закон Ома для полной цепи
- •Контрольные вопросы к §5
- •§6 Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме
- •6.1 Сопротивление проводников.
- •6.2 Сверхпроводимость.
- •6.3 Электронная теория проводимости металлов.
- •6.1. Сопротивление проводников
- •6.2. Сверхпроводимость
- •6.3. Электронная теория проводимости металлов
- •6.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Сверхпроводники 1-го и 2-го рода.
- •Эффект Мейснера.
- •Гроб Мухаммеда.
- •Теория бкш.
- •Математический аппарат.
- •Применение явления сверхпроводимости.
- •Контрольные вопросы к §6
- •§7 Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа
- •7.1 Работа и мощность электрического тока. Закон Джоуля - Ленца
- •7.2 Разветвление цепи
- •7.3 Правила Кирхгофа
- •7.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •7.2. Разветвление цепи
- •7.3. Правила Кирхгофа
- •Контрольные вопросы к §7
- •§8 Понятие зонной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение
- •8.1 Понятие о зонной теории проводимости
- •8.2 Контактная разность потенциалов
- •8.3 Термоэлектрические явления и их применение
- •8.1. Понятие о зонной теории проводимости
- •8.2. Контактная разность потенциалов
- •8.3. Термоэлектрические явления и их применение
- •Контрольные вопросы к §8
- •§9 Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза
- •9.1. Электролитическая диссоциация
- •9.2. Проводимость электролитов
- •9.3. Законы Фарадея для электролиза
- •9.4. Определение заряда иона
- •9.5. Техническое применение электролиза
- •Контрольные вопросы к §9
- •§10 Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов
- •Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •Виды разрядов. Применение газовых разрядов
- •10.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •10.2. Виды разрядов. Применение газовых разрядов
- •Контрольные вопросы к §10
- •§ 11. Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение.
- •Термоэлектронная эмиссия
- •Электронные лампы и их применение
- •11.1. Понятие о плазме
- •11.2. Термоэлектронная эмиссия
- •11.3. Электронные лампы и их применение
- •Контрольные вопросы к § 11.
- •§ 12. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы
- •Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •Полупроводниковые диоды и транзисторы
- •12.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •12.2. Полупроводниковые диоды и транзисторы
- •Контрольные вопросы к § 12.
- •Тесты к теме 3. Электрический ток в различных средах
- •Тема 4. Магнитное поле в вакууме и веществе
- •13.1 Взаимодействие токов
- •13.2. Магнитное поле. Индукция и напряженность магнитного поля
- •13.3. Виток с током в магнитном поле
- •13.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.
- •Контрольные вопросы к §13
- •14.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток
- •14.2. Сила Ампера
- •14.3. Работа по перемещению проводника с током в магнитном поле.
- •14.4. Сила Лоренца
- •14.5.Определение удельного заряда электрона
- •Контрольные вопросы к § 14.
- •§ 15.Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления
- •Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость
- •Магнитомеханические явления
- •15.1. Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость
- •15.2. Магнитомеханические явления
- •Контрольные вопросы к § 15.
- •§ 16. Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •Магнитные материалы и их применение
- •16.1. Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •16.2. Магнитный гистерезис. Работы а.Г. Столетова. Точка Кюри
- •16.3. Магнитные материалы и их применение
- •Контрольные вопросы к § 16.
- •Тесты к теме 4. Магнитное поле в вакууме и веществе
- •Глава 5. Электромагнитные явления
- •§17. Электромагнитная индукция. Закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля.
- •17.1. Электромагнитная индукция
- •17.2. Самоиндукция и взаимоиндукция
- •17.3. Энергия и плотность энергии магнитного поля
- •Контрольные вопросы к § 17.
- •18.1. Получение переменной эдс
- •18.2. Сопротивление, индуктивность и емкость в цепи переменного тока. Закон Ома для цепей переменного тока
- •4. Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
- •18.3. Резонанс в последовательной и параллельной цепи
- •18.4. Проблема передачи электроэнергии на расстояние, трансформатор
- •Контрольные вопросы к § 18.
- •Электрический колебательный контур. Собственные колебания. Формула Томсона.
- •Затухающие колебания. Вынужденные колебания в контуре. Резонанс.
- •Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе.
- •19.1. Электрический колебательный контур. Собственные колебания. Формула Томсона
- •19.2. Затухающие колебания. Вынужденные колебания в контуре. Резонанс
- •19.3. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе
- •Контрольные вопросы к § 19.
- •§ 20.Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Излучение электромагнитных волн.
- •Опыты Герца, вибратор Герца.
- •Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации.
- •20.1. Излучение электромагнитных волн
- •20.2. Опыты Герца, вибратор Герца
- •20.3. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Контрольные вопросы к § 20.
- •Тесты к теме 5. Электромагнитные явления
Контрольные вопросы к § 14.
Дайте определение вихревому полю?
Запишите формулу для расчета циркуляции вектора напряженности потенциального электрического поля.
Запишите формулу для расчета магнитного потока.
В каких единицах измеряется магнитный поток в СИ?
Чему равен поток линий магнитной индукции через произвольную замкнутую поверхность S?
Что называют силой Ампера?
Запишите формулу для расчета силы Ампера?
Перечислите оборудование в опыте 14.1 «Сила Ампера».
Какой вывод следует из опыта 14.1 «Сила Ампера»?
От каких факторов зависит направление силы Ампера?
Сформулируйте «правило левой руки».
Запишите формулу для расчета работы по перемещению проводника с током в магнитном поле.
Запишите формулу для расчета силы Лоренца.
От каких параметров зависит сила Лоренца?
Охарактеризуйте частные случаи движения заряженной частицы в магнитном поле.
Перечислите оборудование в опыте 14.2 «Сила Лоренца».
Какой вывод следует из опыта 14.2 «Сила Лоренца»?
В чем заключается метод магнитной фокусировки?
Дайте определение понятию шаг винтовой линии.
Что понимают под силой тока в один ампер?
§ 15.Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления
Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость
Магнитомеханические явления
15.1. Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость
При рассмотрении магнитного поля в вакууме, естественно, не учитывался характер взаимодействия магнитного поля с веществом (ввиду отсутствия последнего). Если же в магнитное поле, создаваемое свободными движущимися зарядами, попадает кусок вещества, возникает взаимодействие поля свободных зарядов с молекулами данного вещества. Для описания этого взаимодействия каждой молекуле вещества стали приписывать некоторый магнитный момент, а реакция совокупности молекул вещества на внешнее магнитное поле характеризуется вектором намагниченности:
(110)
Рис. 142.
Вектор намагниченности – физическая величина, численно равная суммарному магнитному моменту всех молекул, заключенных в единице объема. Под действием внешнего магнитного поля, магнитные моменты молекул вещества будут в той или иной степени изменятся и поворачиваться, подобно тому, как ориентируется виток с током во внешнем магнитном поле.
Тогда по принципу
суперпозиции результирующее поле в
веществе будет складываться из внешнего
магнитного поля
,
созданного свободными движущимися
зарядами или токами вне вещества, и
собственного (наведенного) магнитного
поля
,
возникающего как реакция вещества на
внешнее магнитное поле:
, (111)
где
-
индукция магнитного поля в вакууме, а
– намагниченность.
Эксперименты
свидетельствуют о том, что для большинства
веществ намагниченность
линейно связана с напряженностью
внешнего поля, т.е., чем больше напряженность
внешнего поля, тем больше величина
вектора намагниченности. После всех
подстановок получим формулу:
, (112)
где
-
магнитная проницаемость вещества,
(113)
где
– магнитная восприимчивость вещества.
15.2. Магнитомеханические явления
Вследствие вращения вокруг ядра электрон оказывается подобным волчку. Это обстоятельство лежит в основе так называемых магнитомеханических явлений, заключающихся в том, что намагничение магнетика приводит к его вращению и, наоборот, вращение магнетика вызывает его намагничение. Существование первого явления было доказано экспериментально Эйнштейном и де Хаасом, второго – Барнетом.
В основе опыта Эйнштейна и де Хааса лежат следующие соображения. Если намагнитить стержень из магнетика, то магнитные моменты электронов установятся по направлению поля, а механические моменты – против поля. В результате суммарный механический момент электронов станет отличным от нуля (первоначально вследствие хаотической ориентации отдельных моментов он был равен нулю). Момент импульса системы стержень + электроны должен остаться без изменений. Поэтому стержень приобретает момент импульса, и, следовательно, приходит во вращение. Изменение направления намагниченности приведет к изменению направления вращения стержня.
Механическую модель этого опыта можно осуществить, посадив человека на вращающийся стул и дав ему в руки вращающееся массивное колесо. Повернув колесо осью вверх, человек приходит во вращение в сторону, противоположную направлению вращения колеса. Повернув колесо осью вниз, человек начинает вращаться в другую сторону.
Опыт Эйнштейна и де Хааса осуществлялся следующим образом (Рис. 143.). Тонкий железный стержень подвешивался на упругой нити и помещался внутрь соленоида. Закручивание нити при намагничивании стержня постоянным магнитным полем получалось весьма малым. Для усиления эффекта был применен метод резонанса – соленоид питался переменным током, частота которого подбиралась равной собственной частоте механических колебаний системы. При этих условиях амплитуда колебаний достигала значений, которые можно было измерить, наблюдая смещения светового зайчика, отраженного от зеркальца, укрепленного на нити. Из данных опыта было вычислено магнитомеханическое отношение, которое оказалось равным – (e/m). Таким образом, знак заряда носителей, создающих молекулярные токи, совпал со знаком заряда электрона. Однако полученный результат превысил ожидаемое значение магнитомеханического отношения в два раза.
Рис. 143.
Чтобы понять опыт Барнетта, вспомним, что при попытке вовлечь гироскоп во вращение вокруг некоторого направления ось гироскопа поворачивается так, чтобы направление собственного и принудительного вращений гироскопа совпали. Если установить гироскоп, закрепленный в карданном подвесе, на диск центробежной машины и привести ее во вращение, то ось гироскопа установится по вертикали, причем так, что направление вращения гироскопа совпадет с направлением вращения диска. При изменении направления вращения центробежной машины ось гироскопа поворачивается на 180, т.е. Так, чтобы направления обоих вращений снова совпали.
Барнетт приводил железный стержень в очень быстрое вращение вокруг его оси и измерял возникающую при этом намагниченность. Из результата этого опыта Барнетт также получил для магнитомеханического отношения величину, в два раза превышающую его истинное значение.
В дальнейшем
выяснилось, что, кроме орбитальных
моментов, электрон обладает собственными
механическим
и магнитным
моментами, для которых магнитомеханическое
отношение равно:
т.е. совпадает со значением, полученным в опытах Эйнштейна и да Хааса и Барнетта. Отсюда следует, что магнитные свойства железа обусловлены не орбитальным, а собственным магнитным моментом электронов.
