- •Тема 1. Электрическое поле в вакууме §1 Заряд и поле. Закон Кулона. Напряженность поля
- •1.1. Понятие электрического заряда и его свойства.
- •1.1. Понятие электрического заряда и его свойства
- •Стеклянная и эбонитовая палочки
- •Шелк, шерсть
- •Шелк, шерсть
- •1.2. Закон Кулона
- •1.3. Электрическое поле и его характеристики
- •Свойства поля
- •Напряженность поля
- •Силовые линии
- •Контрольные вопросы к §1.
- •§2 Работа электрического поля по перемещению заряда. Потенциал. Потенциальный характер электростатического поля
- •2.1. Вывод формулы для расчета работы сил поля при перемещении заряда
- •2.2. Понятие потенциала, потенциальный характер электростатического поля
- •2.3. Связь между напряженностью и потенциалом
- •2.4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.
- •Контрольные вопросы к §2
- •Тесты к теме 1. Электрическое поле в вакууме
- •Тема 2. Проводники и диэлектрики в электрическом поле
- •§3 Проводники в электрическом поле. Диэлектрики. Поляризация диэлектриков. Векторы поляризации и электростатической индукции
- •3.1. Проводники в электрическом поле
- •3.2. Диэлектрики
- •3.3. Векторы поляризации и электростатической индукции
- •Контрольные вопросы к §3
- •§4 Электроемкость. Конденсаторы и их применение. Энергия и плотность энергии заряженного конденсатора
- •4.1 Электроемкость.
- •4.2 Конденсаторы и их применение.
- •4.3 Энергия и плотность энергии заряженного конденсатора.
- •4.1. Электроемкость
- •4.2. Конденсаторы и их применение
- •4.3. Энергия и плотность энергии заряженного конденсатора
- •Контрольные вопросы к §4
- •Тесты к теме 2. Проводники и диэлектрики в электрическом поле
- •Тема 3. Электрический ток в различных средах
- •§7 Работа и мощность электрического тока. Закон Джоуля – Ленца. Разветвление цепи. Правила Кирхгофа
- •§8 Понятие о зонной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение
- •§10 Процессы ионизации и рекомбинации. Самостоятельный и несамостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов
- •§5 Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи
- •5.1. Основные характеристики электрического тока
- •5.2. Закон Ома для участка цепи
- •5.3. Сторонние силы. Закон Ома для полной цепи
- •Контрольные вопросы к §5
- •§6 Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме
- •6.1 Сопротивление проводников.
- •6.2 Сверхпроводимость.
- •6.3 Электронная теория проводимости металлов.
- •6.1. Сопротивление проводников
- •6.2. Сверхпроводимость
- •6.3. Электронная теория проводимости металлов
- •6.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Сверхпроводники 1-го и 2-го рода.
- •Эффект Мейснера.
- •Гроб Мухаммеда.
- •Теория бкш.
- •Математический аппарат.
- •Применение явления сверхпроводимости.
- •Контрольные вопросы к §6
- •§7 Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа
- •7.1 Работа и мощность электрического тока. Закон Джоуля - Ленца
- •7.2 Разветвление цепи
- •7.3 Правила Кирхгофа
- •7.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •7.2. Разветвление цепи
- •7.3. Правила Кирхгофа
- •Контрольные вопросы к §7
- •§8 Понятие зонной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение
- •8.1 Понятие о зонной теории проводимости
- •8.2 Контактная разность потенциалов
- •8.3 Термоэлектрические явления и их применение
- •8.1. Понятие о зонной теории проводимости
- •8.2. Контактная разность потенциалов
- •8.3. Термоэлектрические явления и их применение
- •Контрольные вопросы к §8
- •§9 Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза
- •9.1. Электролитическая диссоциация
- •9.2. Проводимость электролитов
- •9.3. Законы Фарадея для электролиза
- •9.4. Определение заряда иона
- •9.5. Техническое применение электролиза
- •Контрольные вопросы к §9
- •§10 Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов
- •Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •Виды разрядов. Применение газовых разрядов
- •10.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •10.2. Виды разрядов. Применение газовых разрядов
- •Контрольные вопросы к §10
- •§ 11. Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение.
- •Термоэлектронная эмиссия
- •Электронные лампы и их применение
- •11.1. Понятие о плазме
- •11.2. Термоэлектронная эмиссия
- •11.3. Электронные лампы и их применение
- •Контрольные вопросы к § 11.
- •§ 12. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы
- •Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •Полупроводниковые диоды и транзисторы
- •12.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •12.2. Полупроводниковые диоды и транзисторы
- •Контрольные вопросы к § 12.
- •Тесты к теме 3. Электрический ток в различных средах
- •Тема 4. Магнитное поле в вакууме и веществе
- •13.1 Взаимодействие токов
- •13.2. Магнитное поле. Индукция и напряженность магнитного поля
- •13.3. Виток с током в магнитном поле
- •13.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.
- •Контрольные вопросы к §13
- •14.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток
- •14.2. Сила Ампера
- •14.3. Работа по перемещению проводника с током в магнитном поле.
- •14.4. Сила Лоренца
- •14.5.Определение удельного заряда электрона
- •Контрольные вопросы к § 14.
- •§ 15.Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления
- •Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость
- •Магнитомеханические явления
- •15.1. Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость
- •15.2. Магнитомеханические явления
- •Контрольные вопросы к § 15.
- •§ 16. Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •Магнитные материалы и их применение
- •16.1. Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •16.2. Магнитный гистерезис. Работы а.Г. Столетова. Точка Кюри
- •16.3. Магнитные материалы и их применение
- •Контрольные вопросы к § 16.
- •Тесты к теме 4. Магнитное поле в вакууме и веществе
- •Глава 5. Электромагнитные явления
- •§17. Электромагнитная индукция. Закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля.
- •17.1. Электромагнитная индукция
- •17.2. Самоиндукция и взаимоиндукция
- •17.3. Энергия и плотность энергии магнитного поля
- •Контрольные вопросы к § 17.
- •18.1. Получение переменной эдс
- •18.2. Сопротивление, индуктивность и емкость в цепи переменного тока. Закон Ома для цепей переменного тока
- •4. Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
- •18.3. Резонанс в последовательной и параллельной цепи
- •18.4. Проблема передачи электроэнергии на расстояние, трансформатор
- •Контрольные вопросы к § 18.
- •Электрический колебательный контур. Собственные колебания. Формула Томсона.
- •Затухающие колебания. Вынужденные колебания в контуре. Резонанс.
- •Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе.
- •19.1. Электрический колебательный контур. Собственные колебания. Формула Томсона
- •19.2. Затухающие колебания. Вынужденные колебания в контуре. Резонанс
- •19.3. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе
- •Контрольные вопросы к § 19.
- •§ 20.Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Излучение электромагнитных волн.
- •Опыты Герца, вибратор Герца.
- •Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации.
- •20.1. Излучение электромагнитных волн
- •20.2. Опыты Герца, вибратор Герца
- •20.3. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Контрольные вопросы к § 20.
- •Тесты к теме 5. Электромагнитные явления
12.2. Полупроводниковые диоды и транзисторы
Основным элементом большинства полупроводниковых элементов является p-n переход.
р-n переходом называется область на границе полупроводников р и n типов.
Условно р-n переход можно показать следующим образом:
Рис. 112.
Опыт 12.3. Полупроводниковый диод.
Цель работы: Изучить принцип работы полупроводникового диода.
Оборудование:
Источник регулируемого переменного напряжения
Осциллограф
Стенд со схемой
Рис.113.
Ход работы.
Установка состоит из источника регулируемого переменного напряжения, осциллографа и стенда со схемой. Переменное напряжение от источника подается на вход стенда. На экране осциллографа наблюдается синусоида. Если увеличивать или уменьшать подаваемое напряжение, то, соответственно, увеличивается или уменьшается амплитуда синусоидального сигнала, видимого на экране осциллографа.
Изучим характер тока, протекающего через диод. Напряжение, попадающее на стенд, подается на края цепочки, состоящей из последовательно соединенных сопротивления и диода. В результате через цепочку идет уже не переменный ток, а пульсирующий, поскольку диод выпрямляет ток. Он пропускает ток в одном направлении и не пропускает в другом. На схеме диод изображается таким образом, что острие треугольника, на данном этапе оно направлено вверх, указывает направление тока проходящего через диод. Для того, чтобы выяснить, каков характер тока, проходящего через диод, на вертикальный усилитель подается напряжение, которое снимается с концов сопротивления. Это напряжение пропорционально току, текущему через сопротивление. Наблюдают, что ток через диод действительно течет только в одном направлении. Полпериода ток отсутствует - горизонтальные участки, полпериода ток идет. Это половинки синусоид, которые смотрят вниз. Но если менять величину напряжения, подаваемую на вход стенда, будет меняется и величина тока, текущего через диод. Диод извлекают из стенда (сигнал на экране осциллографа пропал). Если повернуть диод на 180 градусов, острие треугольника на схеме будет направлено вниз, т.е. изменится направление тока, протекающего через диод. После установки диода на стенде вновь появляется сигнал на экране осциллографа, однако теперь уже те полпериода, которые соответствуют протеканию тока через диод, отображаются половинками синусоиды, направленными вверх.
Вольт-амперная характеристика диода – зависимость между током, протекающим через диод, и напряжением, которое подается на диод. Ток, протекающий через диод, по-прежнему пропорционален напряжению на концах сопротивлений. Это напряжение подается на вертикальный вход осциллографа, а на горизонтальный - напряжение с концов этой цепочки, оно пропорционально напряжению на диоде. В результате на экране осциллографа наблюдается вольт-амперная характеристика диода. Полпериода тока нет, это горизонтальный участок этой характеристики, и полпериода ток идет. Здесь в определенной степени выполняется закон Ома. Величина тока, текущего через диод, пропорциональна напряжению, подаваемому на диод. Если увеличивать или уменьшать напряжение, которое подается на диод, соответственно увеличивается или уменьшается ток, текущий через диод.
Вывод: Односторонняя проводимость p-n перехода позволяет создать выпрямляющее полупроводниковое устройство – полупроводниковый диод.
Знак проводимости соответствует знаку источника, тогда дырки переместятся влево, электроны вправо. Через р-n переход пойдет электрический ток, состоящий из электронов и дырок.
Рис. 114.
Знак проводимости противоположен знаку источника, тогда носители заряда движутся к полюсам, не переходя границу контакта полупроводников, ток через р-n переход не возникает, следовательно, р-n переход обладает односторонней проводимостью.
р-n переход используется в полупроводниковых диодах.
Рис. 115.
Транзистор – полупроводниковый прибор, который состоит из двух р-n переходов, включенных встречно. Эмиттер – область транзистора, откуда берутся носители заряда. Коллектор – область, куда стекаются носители заряда. База выполняет роль, аналогичную роли управляющей сетки в лампе.
Рис. 116.
Транзисторы служат для усиления электрических сигналов, потому что небольшое изменение напряжения между эмиттером и базой приводит к значительному изменению напряжения на нагрузке, включенной в цепи коллектора.
Опыт 12.4. Усилитель постоянного тока на транзисторе
Оборудование:
1. Транзистор на подставке
2. Фотодиод на подставке
3. Источник тока В-24
4. Соединительные провода
5. Электрическая лампочка
6. Два демонстрационных гальванометра
Схема установки (Рис. 117):
Рис. 117.
При затемнении фотоэлемента ток небольшой. Если же осветить фотоэлемент, то ток возрастает на участке G2.
