- •Тема 1. Электрическое поле в вакууме §1 Заряд и поле. Закон Кулона. Напряженность поля
- •1.1. Понятие электрического заряда и его свойства.
- •1.1. Понятие электрического заряда и его свойства
- •Стеклянная и эбонитовая палочки
- •Шелк, шерсть
- •Шелк, шерсть
- •1.2. Закон Кулона
- •1.3. Электрическое поле и его характеристики
- •Свойства поля
- •Напряженность поля
- •Силовые линии
- •Контрольные вопросы к §1.
- •§2 Работа электрического поля по перемещению заряда. Потенциал. Потенциальный характер электростатического поля
- •2.1. Вывод формулы для расчета работы сил поля при перемещении заряда
- •2.2. Понятие потенциала, потенциальный характер электростатического поля
- •2.3. Связь между напряженностью и потенциалом
- •2.4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.
- •Контрольные вопросы к §2
- •Тесты к теме 1. Электрическое поле в вакууме
- •Тема 2. Проводники и диэлектрики в электрическом поле
- •§3 Проводники в электрическом поле. Диэлектрики. Поляризация диэлектриков. Векторы поляризации и электростатической индукции
- •3.1. Проводники в электрическом поле
- •3.2. Диэлектрики
- •3.3. Векторы поляризации и электростатической индукции
- •Контрольные вопросы к §3
- •§4 Электроемкость. Конденсаторы и их применение. Энергия и плотность энергии заряженного конденсатора
- •4.1 Электроемкость.
- •4.2 Конденсаторы и их применение.
- •4.3 Энергия и плотность энергии заряженного конденсатора.
- •4.1. Электроемкость
- •4.2. Конденсаторы и их применение
- •4.3. Энергия и плотность энергии заряженного конденсатора
- •Контрольные вопросы к §4
- •Тесты к теме 2. Проводники и диэлектрики в электрическом поле
- •Тема 3. Электрический ток в различных средах
- •§7 Работа и мощность электрического тока. Закон Джоуля – Ленца. Разветвление цепи. Правила Кирхгофа
- •§8 Понятие о зонной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение
- •§10 Процессы ионизации и рекомбинации. Самостоятельный и несамостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов
- •§5 Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи
- •5.1. Основные характеристики электрического тока
- •5.2. Закон Ома для участка цепи
- •5.3. Сторонние силы. Закон Ома для полной цепи
- •Контрольные вопросы к §5
- •§6 Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме
- •6.1 Сопротивление проводников.
- •6.2 Сверхпроводимость.
- •6.3 Электронная теория проводимости металлов.
- •6.1. Сопротивление проводников
- •6.2. Сверхпроводимость
- •6.3. Электронная теория проводимости металлов
- •6.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Сверхпроводники 1-го и 2-го рода.
- •Эффект Мейснера.
- •Гроб Мухаммеда.
- •Теория бкш.
- •Математический аппарат.
- •Применение явления сверхпроводимости.
- •Контрольные вопросы к §6
- •§7 Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа
- •7.1 Работа и мощность электрического тока. Закон Джоуля - Ленца
- •7.2 Разветвление цепи
- •7.3 Правила Кирхгофа
- •7.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •7.2. Разветвление цепи
- •7.3. Правила Кирхгофа
- •Контрольные вопросы к §7
- •§8 Понятие зонной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение
- •8.1 Понятие о зонной теории проводимости
- •8.2 Контактная разность потенциалов
- •8.3 Термоэлектрические явления и их применение
- •8.1. Понятие о зонной теории проводимости
- •8.2. Контактная разность потенциалов
- •8.3. Термоэлектрические явления и их применение
- •Контрольные вопросы к §8
- •§9 Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза
- •9.1. Электролитическая диссоциация
- •9.2. Проводимость электролитов
- •9.3. Законы Фарадея для электролиза
- •9.4. Определение заряда иона
- •9.5. Техническое применение электролиза
- •Контрольные вопросы к §9
- •§10 Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов
- •Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •Виды разрядов. Применение газовых разрядов
- •10.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •10.2. Виды разрядов. Применение газовых разрядов
- •Контрольные вопросы к §10
- •§ 11. Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение.
- •Термоэлектронная эмиссия
- •Электронные лампы и их применение
- •11.1. Понятие о плазме
- •11.2. Термоэлектронная эмиссия
- •11.3. Электронные лампы и их применение
- •Контрольные вопросы к § 11.
- •§ 12. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы
- •Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •Полупроводниковые диоды и транзисторы
- •12.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •12.2. Полупроводниковые диоды и транзисторы
- •Контрольные вопросы к § 12.
- •Тесты к теме 3. Электрический ток в различных средах
- •Тема 4. Магнитное поле в вакууме и веществе
- •13.1 Взаимодействие токов
- •13.2. Магнитное поле. Индукция и напряженность магнитного поля
- •13.3. Виток с током в магнитном поле
- •13.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.
- •Контрольные вопросы к §13
- •14.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток
- •14.2. Сила Ампера
- •14.3. Работа по перемещению проводника с током в магнитном поле.
- •14.4. Сила Лоренца
- •14.5.Определение удельного заряда электрона
- •Контрольные вопросы к § 14.
- •§ 15.Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления
- •Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость
- •Магнитомеханические явления
- •15.1. Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость
- •15.2. Магнитомеханические явления
- •Контрольные вопросы к § 15.
- •§ 16. Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •Магнитные материалы и их применение
- •16.1. Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •16.2. Магнитный гистерезис. Работы а.Г. Столетова. Точка Кюри
- •16.3. Магнитные материалы и их применение
- •Контрольные вопросы к § 16.
- •Тесты к теме 4. Магнитное поле в вакууме и веществе
- •Глава 5. Электромагнитные явления
- •§17. Электромагнитная индукция. Закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля.
- •17.1. Электромагнитная индукция
- •17.2. Самоиндукция и взаимоиндукция
- •17.3. Энергия и плотность энергии магнитного поля
- •Контрольные вопросы к § 17.
- •18.1. Получение переменной эдс
- •18.2. Сопротивление, индуктивность и емкость в цепи переменного тока. Закон Ома для цепей переменного тока
- •4. Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
- •18.3. Резонанс в последовательной и параллельной цепи
- •18.4. Проблема передачи электроэнергии на расстояние, трансформатор
- •Контрольные вопросы к § 18.
- •Электрический колебательный контур. Собственные колебания. Формула Томсона.
- •Затухающие колебания. Вынужденные колебания в контуре. Резонанс.
- •Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе.
- •19.1. Электрический колебательный контур. Собственные колебания. Формула Томсона
- •19.2. Затухающие колебания. Вынужденные колебания в контуре. Резонанс
- •19.3. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе
- •Контрольные вопросы к § 19.
- •§ 20.Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Излучение электромагнитных волн.
- •Опыты Герца, вибратор Герца.
- •Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации.
- •20.1. Излучение электромагнитных волн
- •20.2. Опыты Герца, вибратор Герца
- •20.3. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Контрольные вопросы к § 20.
- •Тесты к теме 5. Электромагнитные явления
Контрольные вопросы к § 11.
свойство плазмы называют квазинейтральностью?
Перечислите все разновидности плазмы.
Назовите два типа магнитных ловушек.
Какое явление называется катодолюминесценцией?
Какие виды эмиссии электронов существуют?
Перечислите оборудование в опыте 11.1 «Термоэлектронная эмиссия».
Запишите формулу Дэшмана.
Какой электровакуумный прибор называется диодом?
Сформулируйте основное свойство диода.
Опишите устройство электронно-лучевой трубки.
Перечислите области применения плазмы.
В чем состоит явление «каналовые лучи»?
В чем состоит явление «катодные лучи»?
Перечислите основные характеристики плазмы.
Как называется область физики, которая занимается изучением поведения плазмы в магнитных полях?
Что произойдет, если постепенно понижать давление в трубке тлеющего разряда?
Дайте определение плазмохимии?
Почему подогревной элемент катода электронных ламп изготавливается из тугоплавких металлов?
Чем отличается лампа триод от лампы диода?
Для чего, например, используется лампа триод?
§ 12. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы
Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
Полупроводниковые диоды и транзисторы
12.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
Полупроводники – твердые тела, занимающие место между проводниками и диэлектриками. К полупроводникам относятся либо чистые химические элементы третьей, четвертой, пятой групп таблицы Менделеева, либо их соединения.
Особенность полупроводников состоит в том, что в них имеется два рода носителей электрического заряда: электроны и дырки.
Если полупроводник образован одним элементом, то в нем существует только один из указанных выше носителей зарядов и один вид проводимости.
В качестве примера, рассмотрим элемент IV группы таблицы Менделеева: германий – Ge.
Германий имеет кристаллическую решетку, в узлах которой находятся атомы германия, у которых четыре валентных электрона свои, а четыре являются общими, т.е. принадлежат соседним атомам. Таким образом, внешний слой получается полностью заполненным (ковалентная связь).
Рис. 103.
За счет внешних воздействий кристаллическая решетка не является идеальной, т.е. в ней существуют дефекты. При наличии дефектов часть электронов оказывается свободными и под действием внешнего электрического поля может начать перемещаться. Так возникает электронная проводимость.
По той же причине ряд химических связей оказываются незаполненными, в кристаллической решетке появляются дырки. Туда, где имеется незаполненная химическая связь, может попасть электрон, но то место, где он был ранее, освободится, т.е. электрон и дырка поменяются местами. Поэтому можно сказать, что в полупроводнике под воздействием электрического поля возникает не только ток электронов, но и ток квазичастиц – “дырок”. “Дырка” – такая квазичастица (“квази” – как бы), заряд которой по модулю равен заряду электрона, а масса равна массе электрона.
Рассмотрим этот процесс с помощью энергетической диаграммы. Если электрон переходит из валентной зоны в зону проводимости под действием электрического поля, то в валентной зоне возникает дырка, и, соответственно, наоборот.
Рис. 104.
Увеличить число носителей заряда в полупроводнике можно с помощью привнесения в него определенных примесей. При этом возможны два случая:
1. Пусть один из атомов германия в кристаллической решетке замещен атомом элемента пятой группы таблицы Менделеева, например, мышьяком As. При этом появится один лишний электрон (пятый). Если атом мышьяка не один, то появятся свободные электроны, возникает примесная проводимость n-типа (от англ. negative – отрицательный).
Рис. 105.
2. Пусть один из атомов германия замещен в кристаллической решетке на один из элементов третьей группы таблицы Менделеева, например, индием In. Тогда одна связь остается незаполненной, возникает примесная проводимость p-типа (от англ. positive – положительный).
Рис. 106.
Опыт 12.1. Действие полупроводникового фотоэлемента
Оборудование:
1. Полупроводниковый элемент на подставке
2. Соединительные провода
3. Демонстрационный светильник
4. Гальванометр
Схема установки:
Рис. 107.
Селеновый фотоэлемент представляет собой железную пластинку, покрытую тонким слоем селена, обладающего дырочной проводимостью. На поверхность селена нанесен тонкий полупрозрачный слой золота. В результате специальной обработки часть атомов золота проникла в селен и образовала в нем тонкий слой с электронной проводимостью. На границе двух слоев с различным типом проводимости образовался электронно-дырочный переход.
Собирают установку (Рис. 107) и при дневном освещении обнаруживают по гальванометру появление слабого тока в цепи. Затем фотоэлемент освещают электрической лампой. Наблюдают, как по мере приближения лампы к фотоэлементу ток в цепи увеличивается, и стрелка гальванометра отклоняется на всю шкалу. При затемнении фотоэлемента ток почти прекращается. Таким образом, убеждаются, что полупроводниковый фотоэлемент представляет собой источник тока, в котором энергия света преобразуется непосредственно в электрическую.
Опыт 12.2. Электронно-дырочные проводимости полупроводников.
Оборудование:
1. Термоэлемент на подставке
2. Нагреватель (спиртовка)
3. Соединительные провода
4. Гальванометр демонстрационный
Схема установки:
Рис. 108.
Для демонстрации двух видов проводимости примесных полупроводников берут полупроводниковый термоэлемент. Вид проводимости определяют по направлению термотока в цепи. Опыт начинают с демонстрации электронной проводимости.
Собирают установку по рисунку 108. Индикатором термотока служит демонстрационный гальванометр с малым внутренний сопротивлением (от вольтметра) и шкалой “5-0-5”. Его стрелку предварительно устанавливают на нуль шкалы с помощью механического корректора, а сам прибор подключают к термоэлементу так: зажим гальванометра со знаком “+” соединяют с нижним холодным концом полупроводника, обладающего электронной проводимостью (с правым зажимом термоэлемента), а второй зажим гальванометра – с верхним концом полупроводника (средним зажимом термоэлемента).
Пока температура обоих концов полупроводника одинакова, тока в цепи нет. Затем верхний конец полупроводника (к нему припаяна медная пластинка) осторожно нагревают, например, слегка разогретым паяльником. Стрелка гальванометра отклоняется влево. По направлению тока легко определить полярность концов включенного полупроводника. Проверка показывает, что ток в цепи идет от горячего конца полупроводника к холодному. Следовательно, горячий конец полупроводника зарядился положительно, а холодный – отрицательно.
Рис. 109.
По рисунку 109 видно, что явление возможно в том случае, если основными носителями заряда в полупроводнике являются электроны. Действительно, при нагревании полупроводника за счет атомов примеси увеличивается число и скорость свободных электронов. Эти электроны по законам диффузии начинают перемещаться в полупроводнике в сторону холодного конца и заряжают его отрицательно. Горячий конец при этом заряжается положительно. Разделение зарядов приводит к образованию электрического поля, под действием которого и создается термоток в цепи.
Для демонстрации дырочной проводимости гальванометр подключают к концам второго полупроводника термоэлемента, причем нагретый конец полупроводника (средний зажим) соединяют с тем же зажимом гальванометра, что и в первом случае (Рис. 110). Теперь стрелка гальванометра отклоняется в правую сторону, несмотря на одинаковое включение гальванометра.
Рис. 110.
Обратное направление тока в цепи указывает на обратную полярность концов полупроводника: горячий конец зарядился отрицательно, а холодный – положительно. Значит, во втором полупроводнике изменился знак носителей заряда. Теперь носителями заряда являются дырки, которые ведут себя как положительные заряды.
Рис. 111.
На горячем конце полупроводника возникают дополнительные свободные электроны (Рис. 111.). Но теперь освободившиеся электроны захватываются атомами примеси и вновь теряют возможность перемещаться и участвовать в проводимости. В то же время в основных атомах полупроводника, из которых эти электроны вырвались, остаются свободные места – дырки. Таких дырок образуется больше в нагретом конце полупроводника. Из соседних атомов на место образовавшихся дырок переходят валентные электроны. Дырки в первых атомах заполняются электронами, но зато они появляются в других атомах. В результате таких своеобразных переходов электронов дырки перемещаются от горячего конца к холодному и заряжают его положительно; горячий же конец полупроводника заряжается отрицательно.
