- •1.1. Локализация диапазона ик- спектроскопии в общей шкале электромагнитного излучения. Уравнение Планка. Понятие о волновом числе. Соотношение частоты, длины волны и волнового числа.
- •1.2. Роль селективного поглощения излучения в специфическом характере ик- спектра. Закон Ламберта-Бера. Понятие о коэффициенте поглощения.
- •1.3. Многоатомные молекулы. Число степеней свободы, связанных с колебательными движениями. Колебательные спектры трехатомных молекул. Деформационные колебания.
- •1.4. Факторы, препятствующие интерпретации спектров.
- •1.5. Схема ик-спектрофотометра и принципы работы прибора. Эффективные характеристики прибора, калибровка.
- •1.6. Требования к образцу и его подготовка к анализу. Ограничения.
- •1.7. Деление ик-спектра на отдельные области. Условность деления. Значение для интерпретации. Факторы, усложняющие вид полос поглощения.
- •1.8. Оценка интенсивности полос поглощения в ик-спектроскопии и ее роль при интерпретации спектров. Факторы влияния на интенсивность.
- •1.9. Понятие о характеристических частотах групп и факторах, влияющих на них.
- •1.10. Межмолекулярные эффекты и характеристические частоты групп.
- •1.11. Внутримолекулярные факторы и характеристические частоты.
- •1.12. Характеристическое поглощение связей с-н. Виды колебаний в сн3—, сн2— и сн— группах.
- •Спектроскопия ямр
- •2.1. История открытия ямр. Уникальность метода ямр. Теоретические основы состава и движения ядер атомов. Характеристические параметры ядра.
- •2.2. Классический подход к объяснению возникновения ямр.
- •2.3. Квантово-механический подход к ямр. Квантование момента количества движения магнитных ядер. Уровни энергии.
- •2.4. Условия обнаружения сигнала ямр. Статистика и магнетизм ядра. Роль четности и нечетности в соотношении нуклонов ядра. Виды спектроскопии ямр.
- •2.5. Эффекты окружения в протонном резонансе. Представление об электронном экранировании и химическом сдвиге. Две шкалы оценки химического сдвига.
- •2.6. Ввзаимосвязь величин частоты и напряженности магнитного поля. Обеспечение постоянства Δν/ν. Зависимость вида спектра от частоты и напряженности поля.
- •2.7. Аномалия в химических сдвигах некоторых молекул. Эффект дальнего экранирования и его природа.
- •2.9. Спектры 0 и I-го порядка. Спин-спиновое взаимодействие, константа непрямого спин-спинового взаимодействия.
- •2.10. Механизм спин-спинового взаимодействия. Мультиплетность. Условия отнесения спектров ямр к спектрам I-го порядка. Формула мультиплетности для спектров I-го порядка.
- •2.12. Калибровка спектров ямр. Интегрирование сигналов. Назначение дополнительного оборудования.
- •2.13. Требования к образцу. Выбор растворителя. Реагенты специального назначения.
- •2.14. Введение в анализ спектров ямр высокого разрешения. Формулировка задачи.
- •2.17. Спектроскопия ямр других ядер помимо спектроскопии пмр. Преимущества и недостатки при сравнении результатов спектроскопии разных ядер. Области применения.
- •2.18. Динамические эффекты в ямр спектрах.
- •Масс-спектрометрия
- •3.2. Цели и задачи мс. Три основных типа информации, получаемые методом мс.
- •3.3. Характер дополнительной информации, получаемый методом мс. Определения массы молекулярного иона и его роль в мс анализе.
- •3.8. Общие схемы процессов, происходящих при ионизации нейтральных молекул в камере масс-спектрометра.
- •3.9. Понятие о масс-спектре. Обработка спектра для качественных и количественных исследований.
- •3.10. Условия появления молекулярного иона в спектре и его роль в идентификации веществ.
- •3.11. Особенности масс-спектрального анализа органических соединений.
- •3.12. Существующие ограничения при анализе органических соединений методом мс.
- •3.13. Схема основных узлов масс-спектрометра и принципы его работы. Особенности ввода пробы анализируемых веществ в прибор мс. Способы ввода образцов.
- •3.14. Основные характеристики прибора.
- •3.15. Процессы диссоциативной и ассоциативной ионизации органических соединений.
- •3.16. Методы диссоциативной ионизации.
- •3.17. Общие закономерности фрагментации.
- •3.18. Простой разрыв связей, правила фрагментации.
- •3.19. Масс-спектры отдельных классов органических соединений.
- •4.1. Электронные энергетические уровни и переходы – область исследования методом уф-спектроскопии.
- •4.2. Хромофоры. Ауксохромы. Батохромный и гипсохромный сдвиг максимума поглощения в уф-спектроскопии.
3.18. Простой разрыв связей, правила фрагментации.
1. Относительная интенсивность пика молекулярного иона максимальна для неразветвленных соединений и уменьшается по мере увеличения разветвленности.
2. Разрыв связей происходит преимущественно по алкилзамещенным атомам углерода.
Правило выброса максимального алкильного радикала: интенсивность пика ионов, образующихся при выбросе максимального радикала – наивысшая, при выбросе минимального радикала - низшая
3. Насыщенные циклы способны терять боковые цепи при α-связи. Положительный заряд остается на циклическом фрагменте.
4. Распад ароматических алкилзамещенных соединений наиболее вероятен по β-связи относительно цикла. В результате получается бензильный ион, или ион тропилия.
5. С увеличением молекулярной массы в гомологическом ряду относительная интенсивность пика молекулярного иона обычно уменьшается. Исключение – сложные эфиры жирных кислот.
6. Двойные связи, циклические структуры и, особенно ароматические (гетероароматические) циклы, стабилизируют молекулярный ион.
7. Двойные связи способствую аллильному распаду с образованием аллильного карбокатиона.
8. Следующие за гетероатомом связи С-С часто разрываются, оставляя заряд на содержащем гетероатом фрагменте, несвязывающие электроны которого обеспечивают резонансную стабиизацию.
9. Распад часто сопровождается элиминированием небольших устойчивых нейтральных молекул (СО, СН2=СН2, Н2О, NH3 и др.)
10. Необходимо знать некоторые специфические ионы, характеризующиеся интенсивными пиками:
m/z 77 – фенил С6Н5
m/z 91 – тропилий С7Н7 (бензил)
m/z 30 – аминогруппа CH2NH2
m/z 105 – бензоил PhC=O
10. Если спектр характеризуется большим числом фрагментов, пики которых имеют все большую интенсивность при движении вниз по шкале масс, скорее всего это алифатическое соединение.
11. Редкие интенсивные пики характерны для ароматических структур
12. Пики с массовыми числами 73, 147, 207, 281, 355 и т.д. не относятся к спектру исследуемого вещества, а являются следствием выброса фрагментов наиболее распространенных полидиметилсиликоновых фаз хроматографической колонки в источник масс-спектрометра.
3.19. Масс-спектры отдельных классов органических соединений.
УФ-спектроскопия
4.1. Электронные энергетические уровни и переходы – область исследования методом уф-спектроскопии.
Классификация электронных переходов производится по типам одноэлектронных молекулярных орбиталей, участвующих в переходе (например, по орбиталей Ψ2 и Ψ3 в формуле(1.6)). Переходы могут быть следующих типов:
σ→σ* (вакуумный УФ)
π→π* (УФ, видимая область)
n→π* (УФ, видимая область)
Поясним последний тип перехода на примере молекулы пиридина.
Рассмотрим электронное строение атома азота, входящего в кольцо. Он будет иметь гибридизацию sp2 и 1p электрон с волновой функцией, перпендикулярной плоскости кольца. Схема электронной конфигурации имеет вид:
Пространственное расположение полярных диаграмм волновых функций можно представить следующим образом:
Пунктиром показана не поделенная пара (n) электронов, имеющих гибридизацию sp2, не участвующая в образовании валентных связей. Одноэлектронные молекулярные орбитали молекулы пиридина имеют следующий вид:
Незаполненные орбитали отмечены знаком «*». На схеме один из π→π* переходов отмечен сплошной стрелкой, а n→π* - пунктирной. Одноэлектронные молекулярные орбитали, участвующие в n→π* переходе, ортогональны между собой и поэтому эти переходы, как правило, имеют меньшую интенсивность, чем π→π* переходы. С помощью теории групп можно строго показать, что для π→π* переходов дипольный момент перехода лежит в плоскости кольца, а в случае n→π* переходов момент перехода перпендикулярен плоскости кольца, а в случае переходов момент переходов перпендикулярен плоскости кольца.
