- •1.1. Локализация диапазона ик- спектроскопии в общей шкале электромагнитного излучения. Уравнение Планка. Понятие о волновом числе. Соотношение частоты, длины волны и волнового числа.
- •1.2. Роль селективного поглощения излучения в специфическом характере ик- спектра. Закон Ламберта-Бера. Понятие о коэффициенте поглощения.
- •1.3. Многоатомные молекулы. Число степеней свободы, связанных с колебательными движениями. Колебательные спектры трехатомных молекул. Деформационные колебания.
- •1.4. Факторы, препятствующие интерпретации спектров.
- •1.5. Схема ик-спектрофотометра и принципы работы прибора. Эффективные характеристики прибора, калибровка.
- •1.6. Требования к образцу и его подготовка к анализу. Ограничения.
- •1.7. Деление ик-спектра на отдельные области. Условность деления. Значение для интерпретации. Факторы, усложняющие вид полос поглощения.
- •1.8. Оценка интенсивности полос поглощения в ик-спектроскопии и ее роль при интерпретации спектров. Факторы влияния на интенсивность.
- •1.9. Понятие о характеристических частотах групп и факторах, влияющих на них.
- •1.10. Межмолекулярные эффекты и характеристические частоты групп.
- •1.11. Внутримолекулярные факторы и характеристические частоты.
- •1.12. Характеристическое поглощение связей с-н. Виды колебаний в сн3—, сн2— и сн— группах.
- •Спектроскопия ямр
- •2.1. История открытия ямр. Уникальность метода ямр. Теоретические основы состава и движения ядер атомов. Характеристические параметры ядра.
- •2.2. Классический подход к объяснению возникновения ямр.
- •2.3. Квантово-механический подход к ямр. Квантование момента количества движения магнитных ядер. Уровни энергии.
- •2.4. Условия обнаружения сигнала ямр. Статистика и магнетизм ядра. Роль четности и нечетности в соотношении нуклонов ядра. Виды спектроскопии ямр.
- •2.5. Эффекты окружения в протонном резонансе. Представление об электронном экранировании и химическом сдвиге. Две шкалы оценки химического сдвига.
- •2.6. Ввзаимосвязь величин частоты и напряженности магнитного поля. Обеспечение постоянства Δν/ν. Зависимость вида спектра от частоты и напряженности поля.
- •2.7. Аномалия в химических сдвигах некоторых молекул. Эффект дальнего экранирования и его природа.
- •2.9. Спектры 0 и I-го порядка. Спин-спиновое взаимодействие, константа непрямого спин-спинового взаимодействия.
- •2.10. Механизм спин-спинового взаимодействия. Мультиплетность. Условия отнесения спектров ямр к спектрам I-го порядка. Формула мультиплетности для спектров I-го порядка.
- •2.12. Калибровка спектров ямр. Интегрирование сигналов. Назначение дополнительного оборудования.
- •2.13. Требования к образцу. Выбор растворителя. Реагенты специального назначения.
- •2.14. Введение в анализ спектров ямр высокого разрешения. Формулировка задачи.
- •2.17. Спектроскопия ямр других ядер помимо спектроскопии пмр. Преимущества и недостатки при сравнении результатов спектроскопии разных ядер. Области применения.
- •2.18. Динамические эффекты в ямр спектрах.
- •Масс-спектрометрия
- •3.2. Цели и задачи мс. Три основных типа информации, получаемые методом мс.
- •3.3. Характер дополнительной информации, получаемый методом мс. Определения массы молекулярного иона и его роль в мс анализе.
- •3.8. Общие схемы процессов, происходящих при ионизации нейтральных молекул в камере масс-спектрометра.
- •3.9. Понятие о масс-спектре. Обработка спектра для качественных и количественных исследований.
- •3.10. Условия появления молекулярного иона в спектре и его роль в идентификации веществ.
- •3.11. Особенности масс-спектрального анализа органических соединений.
- •3.12. Существующие ограничения при анализе органических соединений методом мс.
- •3.13. Схема основных узлов масс-спектрометра и принципы его работы. Особенности ввода пробы анализируемых веществ в прибор мс. Способы ввода образцов.
- •3.14. Основные характеристики прибора.
- •3.15. Процессы диссоциативной и ассоциативной ионизации органических соединений.
- •3.16. Методы диссоциативной ионизации.
- •3.17. Общие закономерности фрагментации.
- •3.18. Простой разрыв связей, правила фрагментации.
- •3.19. Масс-спектры отдельных классов органических соединений.
- •4.1. Электронные энергетические уровни и переходы – область исследования методом уф-спектроскопии.
- •4.2. Хромофоры. Ауксохромы. Батохромный и гипсохромный сдвиг максимума поглощения в уф-спектроскопии.
Масс-спектрометрия
3.1. Физические принципы, лежащие в основе анализа химических веществ, методом масс-спектроскопии. Исторические этапы развития МС в приложении к анализу органических соединений. Общие отличия масс-спектроскопии от других видов спектроскопических исследований. Определение масс-спектроскопии как физического метода исследования.
Масс-спектрометрия - это физический метод измерения отношения массы заряженных частиц материи (ионов) к их заряду. Приборы, которые используются в этом методе, называются масс-спектрометры или масс-спектрометрические детекторы. Эти приборы имеют дело с материальным веществом, которое как известно, состоит из мельчайших частиц - молекул и атомов. Масс-спектрометры устанавливают что это за молекулы (то есть, какие атомы их составляют, какова их молеклярная масса, какова структура их расположения) и что это за атомы (то есть их изотопный состав). Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия имеет дело с самими частицами вещества. Масс-спектрометрия измеряет их массы, вернее соотношение массы к заряду. Для этого используются законы движения заряженных частиц материи в магнитном или электрическом поле. Масс-спектр - это просто рассортировка заряженных частиц по их массам (точнее отношениям массы к заряду). Следовательно, первое, что надо сделать для того, чтобы получить масс-спектр, превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы. Этот процесс называется ионизацией и по разному осуществляется для органических и неорганических веществ.
Говоря о достоинствах масс-спектромстрии, следует прежде всего отмстить чувствительность, экспрсссность, информативность и надежность метода. Для получения достоверного масс-спектра индивидуального соединения даже на рутинном масс-спектрометре достаточно 10-9-10-10 г вещества. При необходимости простого детектирования конкретного соединения в смеси порог обнаружения может быть легко снижен до 10-12-10-14 г. Использование современного оборудования и современных методов ионизации позволяет в некоторых случаях увеличить чувствительность метода еще на несколько порядков.
История масс-спектрометрии насчитывает около 100 лет. Годом рождения масс-спектрометрии можно считать 1901 г., когда немецкий физик В. Кауфман создал первый прототип параболического масс-спектрографа для изучения «катодных лучей», или 1913 г., когда сэр Дж. Томсон впервые спектрально «увидел» изотопы неона, или 1918 г., когда А. Демпстер сконструировал первый магнитный масс-спектрометр с источником для электронной и термической ионизации. На протяжении следующих 50 лет «масс-спектральная наука» оставалась прерогативой исключительно физиков и физикохимиков. В 1950-е годы впервые были соединены газовый хроматограф и масс-спектрометр. Органическая масс-спектрометрия характеризуется полувековой историей. После второй мировой войны возникло понимание, что метод можно использовать не только в качестве прецезионного физико-математического инструмента, но и в качестве удобного способа идентификации достаточно сложных соединений по набору характеристических фрагментных ионов.
Масс-спектрометрия является физико-химическим метолом анализа, заключающимся в переводе молекул образца в ионизированную форму с последующим разделением и регистрацией образующихся при этом положительных или отрицательных ионов. Масс-спектр позволяет сделать выводы о молекулярной массе соединения, его составе и структуре. Масса самого тяжелого иона в спектре равна молекулярной массе анализируемого соединения. Принято представлять масс-спектр в виде графика или таблицы (рис. 1).
В
случае графического изображения по оси
абсцисс откладывается масса ионов
(точнее величина отношении массы иона
к его заряду), а но оси ординат — их
интенсивности, т. с. относительное
количество ионов данного вида. Принято
выражать интенсивность в процентах к
полному ионному току (суммарной
интенсивности всех ионов в спектре) или
к интенсивности максимального иона
(рис. 1). В качестве единицы размерности
массы в масс-спектрометрии используются
термины: углеродные единицы (у. е.),
атомные единицы массы (а. с. м.), дальтоны
(Да).
