- •Вопросы к экзамену по дисциплине «программируемые цифровые устройства»
- •История появления микросхем программируемых цифровых устройств. Предшественники плис.
- •Микросхемы типа программируемая логическая матрица. Их основные параметры. Упрощенная схема.
- •Микросхемы типа программируемая матричная логика. Их основные параметры.
- •Функциональные разновидности плм и пмл.
- •Базовые матричные кристаллы. Их характеристики. Полузаказные и заказные ис.
- •Понятие эквивалентного вентиля цифровой схемы.
- •Базовая ячейка бмк.
- •Микросхемы типа «система на кристалле» (SoC).
- •Современные плис. Их разновидности, основные применения.
- •Программируемые цифровые устройства – микропроцессоры и плис. Их характерные особенности и отличия.
- •Память конфигурации плис, питание современных плис.
- •Сложные программируемые логические устройства. Обобщенная структура плис типа cpld.
- •Функциональные блоки плис типа cpld.
- •Программируемая матрица соединений плис типа cpld.
- •Матрица распределения термов плис типа cpld.
- •Макроячейка плис типа cpld.
- •Программируемые пользователем вентильные матрицы – плис типа fpga.
- •Функциональный блок плис типа fpga.
- •Блоки ввода-вывода плис типа fpga.
- •Система межсоединений плис типа fpga.
- •Плис с комбинированной архитектурой.
- •Современные направления развития плис.
- •Методы описания поведения цифровых схем. &&&
- •Язык описания схем vhdl, основные понятия.
- •Структура программы. Ход выполнения проекта на языке vhdl.
- •Ключевые слова и пользовательские идентификаторы языка vhdl.
- •Синтаксис объявления объекта на языке vhdl.
- •Состав архитектуры объекта на языке vhdl.
- •Типы данных языка vhdl – предопределенные и определяемые пользователем.
- •Скалярные и составные типы языка vhdl.
- •Скалярные типы языка vhdl. Атрибуты скалярных типов.
- •Физические типы языка vhdl. Атрибуты физических типов.
- •Преобразование скалярных типов языка vhdl.
- •Перечислимые типы языка vhdl.
- •Понятия базового типа и подтипа языка vhdl.
- •Составные типы. Массивы. Размерность массива.
- •Задание начальных значений массиву на языке vhdl. Ассоциирование.
- •Задание начальных значений массиву на языке vhdl. Агрегаты.
- •Атрибуты данных типа массив языка vhdl.
- •Массивы неограниченной длины на языке vhdl.
- •Предопределенные типы массивов языка vhdl. Битовые векторы и строки.
- •Операции над массивами на языке vhdl. Фрагменты массивов.
- •Записи, их описание, присвоение значений на языке vhdl.
- •Указательные типы данных языка vhdl.
- •Основные операторы языка vhdl.
- •Оператор условия языка vhdl. Пустой оператор.
- •Оператор case языка vhdl.
- •Циклы. Оператор Loop языка vhdl.
- •Циклы с условием. Оператор цикла while языка vhdl.
- •Операторы управления сбором информации о ходе моделирования языка vhdl.
- •Принцип событийного моделирования на языке vhdl.
- •Понятия сигнала, источника сигнала, временной диаграммы, порта на языке vhdl.
- •Атрибуты сигналов языка vhdl.
- •Различие между сигналами и переменными языка vhdl.
- •Разрешение неоднозначности установления сигнала на языке vhdl.
- •Процессы, их описание на языке vhdl. Список чувствительности.
- •Виды задержек и их описание на языке vhdl.
- •Оператор ожидания wait языка vhdl.
- •Компоненты. Декларация компонента на языке vhdl.
- •Структурное описание объекта моделирования на языке vhdl.
- •Описание переменных и констант на языке vhdl. Литералы.
- •Библиотеки, их описание на языке vhdl.
- •Пакеты, их описание на языке vhdl.
- •Оператор генерации generate языка vhdl.
- •Задание конфигурации компонентов на языке vhdl. Конфигурационная спецификация и конфигурационная декларация.
- •Задание конфигурации компонентов на языке vhdl. Правила связывания по умолчанию.
- •Описание переменных и констант на языке vhdl.
- •Последовательные операторы языка vhdl.
- •Синхронные и асинхронные процессы и их описание на языке vhdl.
- •Способы описания комбинационной логики на языке vhdl.
- •Описание триггерных схем на языке vhdl.
- •Описание регистровых схем на языке vhdl.
- •Вычисляемые сигналы языка vhdl.
- •История появления микросхем программируемых цифровых устройств. Предшественники плис.
- •Микросхемы типа программируемая логическая матрица. Их основные параметры. Упрощенная схема.
Программируемая матрица соединений плис типа cpld.
В программируемой матрице соединений ПМС выходы функциональных блоков ФБ подключаются к вертикальным непрерывным линиям, причем каждому выходу соответствует своя линия. Входы ФБ связаны с горизонтальными линиями, пересекающими все вертикальные линии. На пересечениях горизонтальных и вертикальных линий имеются программируемые точки связи, так что любой вход ФБ может быть подключен к любому выходу, чем обеспечивается так называемая полная коммутируемость блоков.
Достоинством ПМС рассмотренного типа является малая и предсказуемая задержка коммутируемых сигналов. Программируемые матрицы соединений эффективны в схемах с относительно небольшим числом коммутируемых блоков. При большом их числе, характерном, например, для FPGA, подобные ПМС были бы чрезмерно сложны.
Матрица распределения термов плис типа cpld.
PLD – микросхемы высокого уровня интеграции, основными частями которых являются:
- PAL (GAL) – подобные функциональные блоки;
- система коммутации, позволяющая объединять функциональные блоки в единое устройство, выполненная в виде матрицы соединений;
- блоки ввода/вывода.
Благодаря введению в схему матрицы распределения термов (МРТ) возможно варьирование числа термов в вырабатываемой функции F. При этом термы заимствуются у других каналов выработки функций или отдаются им. Проще всего организовать коммутацию термов между соседними каналами. Через соседние каналы путём образования цепочечных связей можно собирать в одном канале много термов (в пределах одного функционального блока).
Схемотехнически в операциях распределения термов по каналам ФБ задействованы как непосредственно цепи коммутации между входами и выходами МРТ, так и логические расширители последовательного и параллельного типов. Последовательные логические расширители создаются подачей инвертированного значения терма из МРТ данного канала обратно на один из входов матрицы M (рисунок 1). Переданный в матрицу М терм становится доступным для использования во всех каналах данного ФБ.
Параллельный расширитель позволяет передавать термы одного канала другому. Способность принимать в свой канал термы от соседнего канала обычно означает и возможность приёма через него термов и более далёких каналов с образованием цепочки для сбора термов от нескольких каналов (например, в пределах целого функционального блока). Можно и отдавать собственные термы или их часть другим каналам (в частности, соседним, а через них и более далёким).
Термы от МРТ поступают далее на часть ФБ, называемую макроячейкой (МЯ). Она содержит в качестве основы программируемые триггер (или триггеры) и формирует группы выходных сигналов ФБ в нескольких их вариантах.
Матрица распределения термов формирует функцию OR или XOR из термов, которые поступают из логического массива. Функция может состоять из 5 основных термов, количество которых можно увеличить за счёт использования параллельных расширителей. Если имеются свободные термы, то они могут использоваться для получения дополнительных функций, которые поступают в логический массив через общедоступные расширители.
