- •Ответы на экзаменационные вопросы по курсу «Алгоритмы и структуры данных»
- •1.Понятие типов и структур данных. Оперативные и внешние структуры.
- •2.Стандартные и пользовательские типы данных.
- •3.Определение и представление структур данных.
- •4.Классификация структур данных. Векторы и массивы как статистические структуры. Классификация структур данных
- •Статические структуры данных Векторы
- •Массивы
- •5.Записи и таблицы как статические структуры. Записи
- •6.Понятие списковой структуры. Стек как полустатическая структура. Операция над стеками
- •Алгоритмы основных операций со стеком
- •7.Очередь как полустатическая структура. Операции над очередью. Очередь
- •8.Недостатки полустатической очереди, методы их исправления. Очередь со сдвигом.
- •9.Кольцевая полустатическая очередь. Операции над кольцевой очередью. Деки, операции над ними.
- •10.Понятие динамических структур данных. Организация односвязных и двусвязных списков. Простейшие операции над односвязными списками. Динамические структуры данных
- •Связные списки
- •Односвязные списки
- •Кольцевой односвязный список
- •Двусвязный список
- •Кольцевой двусвязный список
- •Простейшие операции над односвязными списками
- •11.Реализация стеков с помощью списков.
- •Утилизация освободившихся элементов в многосвязных списках
- •13.Очередь и операции над ней при реализации связными списками
- •14.Операции вставки и извлечения элементов из списка. Сравнение этих операций с аналогичными в массивах. Недостаток связного списка по сравнению с массивом.
- •15.Пример алгоритма решения задачи извлечения элементов из списка по заданному признаку.
- •16.Пример алгоритма решения задачи вставки заданного элемента в упорядоченный список.
- •17.Элементы заголовков в списках; нелинейные связные структуры.
- •Нелинейные связанные структуры
- •18.Понятие рекурсивных структур данных. Деревья, их признаки и представления.
- •Деревья
- •Бинарные деревья
- •19.Алгоритм сведения m-арного дерева к бинарному; основные операции над деревьями; виды обхода.
- •Графическое пояснение алгоритма
- •Основные операции с деревьями
- •Рекурсивные алгоритмы обхода (прохождения) бинарных деревьев
- •20.Понятие поиска и ключей; назначение и структуры алгоритмов поиска.
- •21.Последовательный поиск и его эффективность.
- •22.Индексно-последовательный поиск.
- •23.Оптимизация поиска. Переупорядочивание таблицы с учетом вероятности поиска элемента. Дерево оптимального поиска.
- •24.Метод оптимизации поиска путем перестановки в начало списка.
- •25.Метод транспозиции при оптимизации поиска.
- •26.Бинарный поиск
- •27.Алгоритм создания упорядоченного бинарного дерева.
- •28.Поиск по бинарному дереву. Эффективность поиска по бинарному дереву.
- •29.Поиск по бинарному дереву с включением.
- •30.Поиск по бинарному дереву с удалением.
- •31.Алгоритмы прохождения бинарных деревьев. Рекурсивные алгоритмы обхода (прохождения) бинарных деревьев
- •32.Понятие сортировки, ее эффективность; классификация методов сортировки.
- •33.Сортировка методом прямого выбора.
- •34.Сортировка методом прямого включения. Сортировка методом прямого включения
- •Эффективность алгоритма прямого включения
- •35.Сортировка методом прямого обмена.
- •36.Быстрая сортировка.
- •37.Сортировка Шелла.
- •38.Сортировка с помощью бинарного дерева.
- •39.Сравнительный анализ эффективности методов сортировки.
- •40.Нерекурсивный алгоритм обхода бинарного дерева.
8.Недостатки полустатической очереди, методы их исправления. Очередь со сдвигом.
9.Кольцевая полустатическая очередь. Операции над кольцевой очередью. Деки, операции над ними.
Другой способ предполагает рассматривать массив, который содержит очередь в виде замкнутого кольца. Это означает, что даже в том случае, если последний элемент занят, новое значение может быть размещено сразу же за ним на месте первого элемента, если этот первый элемент пуст.
Предположим, что очередь содержит три элемента - в позициях 3, 4 и 5 пятиэлементного массива. Хотя массив и не заполнен, последний элемент очереди занят.
Если теперь делается попытка поместить в очередь элемент G, то он будет записан в первую позицию массива. Первый элемент очереди есть q(3), за которым следуют элементы q (4), q(5) и q(1).
К сожалению, условие R<F больше не годится для проверки очереди на пустоту.
Одним из способов решения этой проблемы является введение соглашения, при котором значение F есть индекс элемента массива, немедленно предшествующего первому элементу очереди, а не индекс самого первого элемента.
В этом случае, поскольку R содержит индекс последнего элемента очереди, условие F = R подразумевает, что очередь пуста.
Перед началом работы с кольцевой очередью в F и R устанавливается значение последнего индекса массива maxQ, а не 1 и 0.
Поскольку R = F, то очередь изначально пуста.
Основные операции с кольцевой очередью:
1. Вставка элемента q в очередь x Insert(q,x);
2. Извлечение элемента из очереди x Remove(q);
3. Проверка очереди на пустоту Empty(q);
4. Проверка очереди на переполнение Full(q).
Операция Empty(q)
if F = R
then empty = true
else empty = false
endif
return
Операция Remove(q)
empty (q)
if empty = true
then “пусто”
stop
endif
if F = maxQ
then F =1
else F = F+1
endif
x = q(F)
return
Значение F должно быть модифицировано до момента извлечения элемента.
Переполнение очереди происходит в том случае, если весь массив уже занят элементами очереди, и при этом делается попытка разместить в ней еще один элемент.
Исходное состояние очереди
Поместим в очередь элемент G.
Если произвести следующую вставку, то массив становится целиком заполненным, и попытка произвести еще одну вставку приводит к переполнению. Это регистрируется тем фактом, что F = R, то есть это соотношение как раз и указывает на переполнение. Очевидно, что при такой реализации нет возможности сделать различие между пустой и заполненной очередью.
Одно из решений состоит в том, чтобы пожертвовать одним элементом массива и позволить очереди расти до объема, на единицу меньшего максимального. Предыдущий рисунок иллюстрирует именно это соглашение. Попытка разместить в очереди еще один элемент приведет к переполнению. Проверка на переполнение в функции insert производится после установления нового значения для R, в то время как проверка на потерю значимости в функции remove производится сразу же после входа в подпрограмму до момента обновления значения F.
Функция Insert(q,x) может быть записана следующим образом:
if R = maxQ
then R = 1
else R = R+1
endif
‘проверка на переполнение’
if R = F
then print «переполнение очереди»
stop
endif
q (R) =x
return
Деки
Происхождение слова от английского DEQ - Double Ended Queue (очередь с двумя концами).
Дек можно рассматривать как два стека, соединенных нижними границами.
Операции над деками:
Insert(d, x) - вставка элемента.
Remove(d) - извлечение элемента из дека.
Empty(d) - проверка на пустоту.
Full(d) - проверка на переполнение.
