- •Ответы на экзаменационные вопросы по курсу «Алгоритмы и структуры данных»
- •1.Понятие типов и структур данных. Оперативные и внешние структуры.
- •2.Стандартные и пользовательские типы данных.
- •3.Определение и представление структур данных.
- •4.Классификация структур данных. Векторы и массивы как статистические структуры. Классификация структур данных
- •Статические структуры данных Векторы
- •Массивы
- •5.Записи и таблицы как статические структуры. Записи
- •6.Понятие списковой структуры. Стек как полустатическая структура. Операция над стеками
- •Алгоритмы основных операций со стеком
- •7.Очередь как полустатическая структура. Операции над очередью. Очередь
- •8.Недостатки полустатической очереди, методы их исправления. Очередь со сдвигом.
- •9.Кольцевая полустатическая очередь. Операции над кольцевой очередью. Деки, операции над ними.
- •10.Понятие динамических структур данных. Организация односвязных и двусвязных списков. Простейшие операции над односвязными списками. Динамические структуры данных
- •Связные списки
- •Односвязные списки
- •Кольцевой односвязный список
- •Двусвязный список
- •Кольцевой двусвязный список
- •Простейшие операции над односвязными списками
- •11.Реализация стеков с помощью списков.
- •Утилизация освободившихся элементов в многосвязных списках
- •13.Очередь и операции над ней при реализации связными списками
- •14.Операции вставки и извлечения элементов из списка. Сравнение этих операций с аналогичными в массивах. Недостаток связного списка по сравнению с массивом.
- •15.Пример алгоритма решения задачи извлечения элементов из списка по заданному признаку.
- •16.Пример алгоритма решения задачи вставки заданного элемента в упорядоченный список.
- •17.Элементы заголовков в списках; нелинейные связные структуры.
- •Нелинейные связанные структуры
- •18.Понятие рекурсивных структур данных. Деревья, их признаки и представления.
- •Деревья
- •Бинарные деревья
- •19.Алгоритм сведения m-арного дерева к бинарному; основные операции над деревьями; виды обхода.
- •Графическое пояснение алгоритма
- •Основные операции с деревьями
- •Рекурсивные алгоритмы обхода (прохождения) бинарных деревьев
- •20.Понятие поиска и ключей; назначение и структуры алгоритмов поиска.
- •21.Последовательный поиск и его эффективность.
- •22.Индексно-последовательный поиск.
- •23.Оптимизация поиска. Переупорядочивание таблицы с учетом вероятности поиска элемента. Дерево оптимального поиска.
- •24.Метод оптимизации поиска путем перестановки в начало списка.
- •25.Метод транспозиции при оптимизации поиска.
- •26.Бинарный поиск
- •27.Алгоритм создания упорядоченного бинарного дерева.
- •28.Поиск по бинарному дереву. Эффективность поиска по бинарному дереву.
- •29.Поиск по бинарному дереву с включением.
- •30.Поиск по бинарному дереву с удалением.
- •31.Алгоритмы прохождения бинарных деревьев. Рекурсивные алгоритмы обхода (прохождения) бинарных деревьев
- •32.Понятие сортировки, ее эффективность; классификация методов сортировки.
- •33.Сортировка методом прямого выбора.
- •34.Сортировка методом прямого включения. Сортировка методом прямого включения
- •Эффективность алгоритма прямого включения
- •35.Сортировка методом прямого обмена.
- •36.Быстрая сортировка.
- •37.Сортировка Шелла.
- •38.Сортировка с помощью бинарного дерева.
- •39.Сравнительный анализ эффективности методов сортировки.
- •40.Нерекурсивный алгоритм обхода бинарного дерева.
36.Быстрая сортировка.
Относится к методам обменной сортировки. В основе лежит методика разделения ключей по отношению к выбранному.
Слева от 6 располагают все ключи с меньшими, а справа - с большими или равными 6.
Алгоритм быстрой сортировки
Sub Sort (L, R)
i = L
j = R
x = a((L + R) div 2)
repeat
while a(i) < x do
i = i + 1
endwhile
while a(j) > x do
j = j - 1
endwhile
if i <= j then
y = a(i)
a(i) = a(j)
a(j) = y
i = i + 1
j = j - 1
endif
until i > j
if L < j then
sort (L, j)
endif
if i < R then
sort (i, R)
endif
return
Sub QuickSort
Sort (1, n)
return
Из всех существующих методов сортировки Quick Sort самый эффективный.
Его эффективность имеет порядок О(n log2 n)
37.Сортировка Шелла.
К улучшенным методам сортировки относятся:
Сортировка Шелла (сортировка с уменьшающимся шагом)
Быстрая сортировка (Quick Sort)
В 1959 году Д. Шеллом было предложено усовершенствование сортировки с помощью метода прямого включения. Иллюстрация его сортировки с начальным шагом, равным 4, представлена на нижеследующем рисунке.
Сначала отдельно группируются и в группах сортируются элементы, отстоящие друг от друга на расстоянии 4. Такой процесс называется четверной сортировкой. В нашем примере 8 элементов, и каждая группа состоит из двух элементов, то есть 1-й и 5-й элементы, 2-й и 6-й, 3-й и 7-й и, наконец, 4-й и 8-й элементы. После четверной сортировки элементы перегруппировываются - теперь каждый элемент группы отстоит от другого на 2 позиции - и вновь сортируются. Это называется двойной сортировкой. И наконец, на третьем проходе идет обычная или одинарная сортировка.
На первый взгляд можно засомневаться: если необходимо несколько процессов сортировки, причем в каждый включаются все элементы, то не добавят ли они больше работы, чем сэкономят? Однако, на каждом этапе либо сортируется относительно мало элементов, либо элементы уже довольно хорошо упорядочены и требуют сравнительно немного перестановок.
Ясно, что такой метод в результате дает упорядоченный массив, и, конечно, сразу же видно, что каждый проход от предыдущих только выигрывает; также очевидно, что расстояния в группах можно уменьшать по разному, лишь бы последнее было единичным, ведь в самом плохом случае последний проход и сделает всю работу.
Приводимый ниже алгоритм не ориентирован на некую определенную последовательность расстояний и использует метод прямой вставки с условным переходом.
При использовании метода барьера каждая из сортировок нуждается в постановке своего собственного барьера, поэтому приходится расширять массив с [0..n ] до [-h1..n ].
Не доказано, какие расстояния дают наилучший результат, но они не должны быть множителями один другого. Д. Кнут предлагает такую последовательность шагов h (в обратном порядке): 1, 3, 7, 15, 31, …
То есть: h m =2h m-1+1 а количество шагов t = log2n - 1.
При такой организации алгоритма его эффективность имеет порядок O ( n1.5)
Алгоритм сортировки Шелла
Обозначим
h[1..t] - массив размеров шагов
a[1..n] - сортируемый массив
k - шаг сортировки
x - значение вставляемого элемента
ShellSort
const t = 3
h(1) = 7
h(2) = 3
h(3) = 1
for m = 1 to t
k = h(m)
for i = 1 + k to n
x = a(i)
for j = i - k to 1 step -k
if x < a(j) then
a( j+k) = a(j)
else goto L endif
next j
L: a(j+k) = x
next i
next m
return
