- •Ответы на экзаменационные вопросы по курсу «Алгоритмы и структуры данных»
- •1.Понятие типов и структур данных. Оперативные и внешние структуры.
- •2.Стандартные и пользовательские типы данных.
- •3.Определение и представление структур данных.
- •4.Классификация структур данных. Векторы и массивы как статистические структуры. Классификация структур данных
- •Статические структуры данных Векторы
- •Массивы
- •5.Записи и таблицы как статические структуры. Записи
- •6.Понятие списковой структуры. Стек как полустатическая структура. Операция над стеками
- •Алгоритмы основных операций со стеком
- •7.Очередь как полустатическая структура. Операции над очередью. Очередь
- •8.Недостатки полустатической очереди, методы их исправления. Очередь со сдвигом.
- •9.Кольцевая полустатическая очередь. Операции над кольцевой очередью. Деки, операции над ними.
- •10.Понятие динамических структур данных. Организация односвязных и двусвязных списков. Простейшие операции над односвязными списками. Динамические структуры данных
- •Связные списки
- •Односвязные списки
- •Кольцевой односвязный список
- •Двусвязный список
- •Кольцевой двусвязный список
- •Простейшие операции над односвязными списками
- •11.Реализация стеков с помощью списков.
- •Утилизация освободившихся элементов в многосвязных списках
- •13.Очередь и операции над ней при реализации связными списками
- •14.Операции вставки и извлечения элементов из списка. Сравнение этих операций с аналогичными в массивах. Недостаток связного списка по сравнению с массивом.
- •15.Пример алгоритма решения задачи извлечения элементов из списка по заданному признаку.
- •16.Пример алгоритма решения задачи вставки заданного элемента в упорядоченный список.
- •17.Элементы заголовков в списках; нелинейные связные структуры.
- •Нелинейные связанные структуры
- •18.Понятие рекурсивных структур данных. Деревья, их признаки и представления.
- •Деревья
- •Бинарные деревья
- •19.Алгоритм сведения m-арного дерева к бинарному; основные операции над деревьями; виды обхода.
- •Графическое пояснение алгоритма
- •Основные операции с деревьями
- •Рекурсивные алгоритмы обхода (прохождения) бинарных деревьев
- •20.Понятие поиска и ключей; назначение и структуры алгоритмов поиска.
- •21.Последовательный поиск и его эффективность.
- •22.Индексно-последовательный поиск.
- •23.Оптимизация поиска. Переупорядочивание таблицы с учетом вероятности поиска элемента. Дерево оптимального поиска.
- •24.Метод оптимизации поиска путем перестановки в начало списка.
- •25.Метод транспозиции при оптимизации поиска.
- •26.Бинарный поиск
- •27.Алгоритм создания упорядоченного бинарного дерева.
- •28.Поиск по бинарному дереву. Эффективность поиска по бинарному дереву.
- •29.Поиск по бинарному дереву с включением.
- •30.Поиск по бинарному дереву с удалением.
- •31.Алгоритмы прохождения бинарных деревьев. Рекурсивные алгоритмы обхода (прохождения) бинарных деревьев
- •32.Понятие сортировки, ее эффективность; классификация методов сортировки.
- •33.Сортировка методом прямого выбора.
- •34.Сортировка методом прямого включения. Сортировка методом прямого включения
- •Эффективность алгоритма прямого включения
- •35.Сортировка методом прямого обмена.
- •36.Быстрая сортировка.
- •37.Сортировка Шелла.
- •38.Сортировка с помощью бинарного дерева.
- •39.Сравнительный анализ эффективности методов сортировки.
- •40.Нерекурсивный алгоритм обхода бинарного дерева.
3.Определение и представление структур данных.
СТРУКТУРЫ ДАННЫХ
Структуры данных - это совокупность элементов данных и отношений между ними. При этом под элементами данных может подразумеваться как простое данное так и структура данных. Под отношениями между данными понимают функциональные связи между ними и указатели на то, где находятся эти данные.
Графическое представление элемента структуры данных.
Элемент отношений - это совокупность всех связей элемента с другими элементами данных, рассматриваемой структуры.
S:=(D,R)
Где S - структура данных, D - данные и R - отношения.
Как бы сложна ни была структура данных, в конечном итоге она состоит из простых данных.
Внутренний мир ЭВМ далеко не так прост, как мы думаем. Память машины состоит из миллионов триггеров, которые обрабатывают поступающую информацию.
Мы, занося инф-циюв компьютер, представляем еѐ вкаком-товиде, который на наш взгляд упорядочивает данные и придаѐт им смысл. Машина отводит поле для поступающейинф-циии задаѐт ейкакой-тоадрес. Т.о. получается, что мы обрабатываем данные на логическом уровне, как бы абстрактно, а машина делает это на физическом уровне.
4.Классификация структур данных. Векторы и массивы как статистические структуры. Классификация структур данных
Структуры данных классифицируются:
1. По связанности данных в структуре:
- если данные в структуре связаны очень слабо, то такие структуры называются несвязанными (вектор, массив, строки, стеки)
- если данные в структуре связаны, то такие структуры называются связанными (связанные списки)
2. По изменчивости структуры во времени или в процессе выполнения программы:
- статические структуры - структуры, неменяющиеся до конца выполнения программы (записи, массивы, строки, вектора)
- полустатические структуры (стеки, деки, очереди)
- динамические структуры - происходит полное изменение при выполнении программы
3. По упорядоченности структуры:
- линейные (вектора, массивы, стеки, деки, записи)
- нелинейные (многосвязные списки, древовидные структуры, графы)
Наиболее важной характеристикой является изменчивость структуры во времени.
Статические структуры данных Векторы
Самая простая статическая структура - это вектор. Вектор - это чисто линейная упорядоченная структура, где отношение между ее элементами есть строго выраженная последовательность элементов структуры (рисункок ниже).
Каждый элемент вектора имеет свой индекс, определяющий положение данного элемента в векторе. Поскольку индексы являются целыми числами, над ними можно производить операции и, таким образом, вычислять положение элемента в структуре на логическом уровне доступа. Для доступа к элементу вектора, достаточно просто указать имя вектора (элемента) и его индекс . Для доступа к этому элементу используется функция адресации, которая формирует из значения индекса адрес слота, где находится значение исходного элемента. Для объявления в программе вектора необходимо указать его имя, количество элементов и их тип (тип данных).
Пример:
var
M1: Array [1..100] of integer;
M2: Array [1..10] of real;
Вектор состоит из совершенно однотипных данных и количество их строго определено.
