- •Глава 1 Основы теории надежности электрических систем
- •1.1 Развитие науки о надежности электрических систем. Ее особенности и задачи
- •1.2 Основные понятия, термины и определения надежности электрических систем
- •1.3 Состояния и события при изучении надежности электрических систем, типы отказов
- •Глава 2. Технологические особенности обеспечения надежности в электрических системах
- •2.1 Свойства электрических систем, влияющие на надёжность их работы
- •2.2 Схемы соединения эс и их надёжность
- •2.3 Надежность работы объединенной эс
- •2.4 Устройства управления режимом эс, влияющие на её надёжность
- •2.5 Понятие о структурной и функциональной надежности электрических систем
- •2.6 Показатели качества энергии, влияющие на надежность.
- •2.7 Трудности обеспечения надежности эс и ее живучести
- •2.8 Нормативные материалы по надежному управлению эс
- •2.9. Требования к надежности эс при проектировании
- •2.10 Системная автоматика как средство управления эс и обеспечения надёжности
- •Глава 3. Технические показатели надежности элементов электрических систем и их определение
- •§ 3.1 Показатели надежности невосстанавливаемых элементов электрических систем
- •3.2. Достоинства и недостатки показателей надёжности
- •1) Вероятность безотказной работы р(t),
- •3.3 Показатели надежности восстанавливаемых элементов (объектов, систем)
- •3.4 Комплексные показатели надежности восстанавливаемых элементов электрических систем
- •3.5 Показатели надежности системы, состоящей из независимых элементов
- •3.6 Показатели надёжности концентрированной эс и методы их определения
- •3.7 Показатели надежности распределительных электрических сетей, при последовательном и параллельном соединении цепей
- •3.8 Основные показатели ремонтопригодности элементов эс
- •3.9 Выбор , обоснование и перераспределение показатели надёжности проектируемой системы
- •3.10 Количественные оценки показателей надёжности
- •Глава IV Структурная надёжность работы основных элементов эс
- •4.1 Основные понятия и показатели надёжности воздушных линий электропередачи
- •Причины высокой повреждаемости вл:
- •Изучение надёжности вл имеет цели:
- •Средние трудозатраты на капитальный ремонт и техобслуживание
- •Проанализируем эти составляющие ущерба Звено I:
- •4.2 Надёжность двухцепных вл
- •4.3. Надёжность лэп с последовательно соединёнными элементами.
- •4.4. Надёжность лэп с параллельным соединением элементов.
- •4.5. Надёжность вл с параллельным соединением элементов при ненагруженном резерве.
- •4.6. Надёжность сложных схем электроснабжения
- •4.7. Методы получения информации о надёжности вл.
- •4.8. Статические методы обработки информации о надёжности вл и оборудования эс.
- •4.8.1. Статическая оценка законов распределения отказов вл и оборудования эс.
- •4.8.2. Подбор теоретического закона распределения св об отказах.
- •Порядок применения критерия согласия :
- •Предположим , что св т (наработка до отказа) , полученная в виде статического ряда подчинена некоторому закону распределения св , приписываемому f(t).
- •4.8.3. Критерии согласия для оценки надёжности элементов эс
- •Критерий а.Н.Колмогорова:
- •4.8.4. Доверительные интервалы при статистической оценке параметров надёжности
- •4.9. Статические показатели надёжности совокупности воздушных линий.
- •4.10. Обработка исходных статических данных воздушных линий по разнородной информации.
- •4.11 Анализ отключений вл 35-750кВ
- •Первый этап вызывают сильные изменения режима эс (вплоть до «развала»).
- •4.12 Отключения и повреждения вл 35-?50 кВ в Минэнерго рб
- •4.13 Статистика повреждений элементов эс в распределительных сетях
- •4.14 Причины отказов основных элементов эс
- •Причины повреждения лэп:
- •4.15 Модель внезапного отказа на примере кабельной линии с.Н.
- •4.16. Расчёт надёжности электрической сети по недоотпуску электроэнергии.
- •4.17 Расчёт эквивалентных характеристик надёжности работы электрических сетей при оценке ущерба.
- •Глава 5. Функциональная надёжность электрических систем.
- •5.1. Функциональная надёжность в схеме станция-система
- •Разгрузка турбин:
- •Деление системы:
- •5.2 Расчёт функциональной надёжности в объединении из двух эс со слабой связью.
- •5.3. Критерии режимной надёжности и их нормирование
- •5.4 Обеспечение режимной (функциональной) надёжности системообразующих сетей эс.
- •5.5 Средства и методы повышения надёжности распределительных сетей.
- •5.6 Методика расчёта надёжности системообразующих сетей эс.
1.3 Состояния и события при изучении надежности электрических систем, типы отказов
Работоспособность системы (элемента) - состояние при котором значения ее параметров находятся в пределах, установленных документацией.
неработоспособность системы (элемента) - состояние, при котором значение хотя бы одного параметра находится не в пределах нормы.
отказ - событие, заключающееся в нарушении работоспособности системы (элемента) т.е. перехода ее из исправного в неисправное состояние.
отказ электрической системы - событие, приводящее к недоотпуску электрической энергии потребителям (всем или части, соответственно полный или частичный отказ) при прекращении или ограничении электроснабжения. Отказом электрической системы также следует считать снижение частоты или напряжения ниже допустимых значений по действующим нормам.
В теории надежности различают три характерных типа отказов, внутренне присущих техническим устройствам:
отказы приработочные, происходящие вследствие несовершенной технологии изготовления, эти отказы могут быть исключены путем «отбраковки» при испытании или наладке устройства;
отказы износовые (постепенные), вызываемые износом отдельных частей устройства или их старением, могут предотвращаться путем периодической замены элементов;
отказы внезапные (случайные), обусловленные случайными сочетаниями многих внешних факторов, и преобладающие на промежутке нормальной эксплуатации устройства.
Характерными внезапными отказами в электрической системе являются отказы типа «короткое замыкание» и «обрыв». Внезапные отказы происходят в электрической системе под действием релейной защиты. Различают также отказы устойчивые и неустойчивые. При устойчивом отказе для восстановлении работоспособности надо вмешательство обслуживающего персонала. Неустойчивый отказ самоустраняется или устраняется автоматически. К последним можно отнести переходящие КЗ на линиях электропередачи, когда их работа восстанавливается автоматом повторного включения. Кроме этого в энергосистеме наблюдаются отказы, выявляемые персоналом по контрольным приборам при обходах и осмотрах оборудования.
Отличительный признак или группа признаков по которым устанавливается факт отказа - критерии отказа.
Рассмотрим понятие «наработка до отказа». Считаем, что система начала работать в момент времени t=0, находясь в работоспособном состоянии. Допустим, что система отключается только вследствие отказа. Обозначим Т - время до отказа. Это время - функция случайных отклонений технологических условий изготовления элементов, условий монтажа, наладки эксплуатации - случайная величина. Отключение системы может быть для технического обслуживания, ремонта из-за циклического графика работы, аварии в других объектах. Продолжительность работы системы в этой ситуации - наработка, а случайная величина т.е. длительность работы без отказа - наработка до отказа. Эту величину также обозначим «Т». Наработка до отказа может измеряться временем (в большинстве случаев) или числом включений (срабатываний, циклов).
Например рассмотрим график эксплуатации системы автоматического управления (рис. 1.1).
Здесь (рис. 1.1)
имеем:
(1.1)
где
- момент отключения
системы автоматического управления
из-за остановки технологического
агрегата;
- момент включения
системы в работу;
- момент отключения
системы на профилактику;
- момент отказа
системы.
Для систем без отключений (кроме отказов), наработка до отказа совпадает со временем безотказной работы.
Восстанавливаемость системы - событие, заключающееся в ее переходе из неработоспособного состояния в работоспособное. Это свойство системы (объекта) позволяющее в случае отказа устранить повреждение, получить значения параметров, удовлетворяющие требованиям ее функционирования. Соответственно имеют место восстанавливаемые системы (объекты). К таким системам относятся и электрические системы, а также большинство их элементов, в которых производится восстановление после отказа;
невосстанавливаемые системы (объекты) - те, восстановление которых после отказа - невозможно или нецелесообразно. Невосстанавливаемость - свойство объекта однократного использования, который не поддается восстановлению в случае отказа. Следует отметить, что изучение показателя надежности для невосстанавливаемых и восстанавливаемых систем производится отдельно.
