- •Пример №1
- •Пример №2
- •Пример №3
- •Пример №4
- •Пример №5
- •Пример №6
- •Пример №7
- •Правила Лопиталя. Примеры решений
- •Наибольшее и наименьшее значения функции на отрезке
- •Метод замены переменной в неопределенном интеграле. Примеры решений
- •Интегрирование по частям. Примеры решений
- •16.1.1. Понятие рациональной дроби
- •16.1.2. Простейшие рациональные дроби и их интегрирование
- •16.1.3. Разложение правильной рациональной дроби на простейшие
- •Интегралы от тригонометрических функций. Примеры решений
- •Геометрическии и физический смысл определенного интеграла
- •Формула ньютона-лейбница
- •Формула Ньютона-Лейбница
- •27 Вопрос. Определённый интеграл с переменным верхним пределом. Формула Ньютона Лейбница. Примеры.
- •2.4. Определенный интеграл с переменным верхним пределом.
- •10. Несобственные интегралы
- •10.1 Несобственные интегралы 1 рода
- •10.1.1 Определение и основные свойства
- •10.1.2 Признаки сходимости несобственных интегралов 1 рода
- •3.1. Определение частных производных
- •36.Вопрос.Производные сложных функций нескольких переменных.(рассмотреть случаи одной и нескольких независимых переменных).Примеры.
- •Производная неявно заданной функции.
- •15. Дифференциал. Инвариантность формул первого дифференциала
- •40.Вопрос.Произвольная по направлению. Градиент примеры.
- •41 Вопрос. Локальный экстремум функции двух переменных (определение, необходимое и достаточное условие экстремума).Пример Экстремум функции двух переменных
- •Примеры решения задач
- •Решение.
- •42 Вопрос. Условный экстремум функции двух переменных (Определение ,необходимое и достаточное условие экстремума, функция Лагранжа. Пример. Условные экстремумы и метод множителей Лагранжа
- •43 Вопрос .Глобальный экстремум функции двух переменных(понятие, способ нахождения пример).
- •Метод наименьших квадратов (мнк).
- •1.Определение двойного интеграла. Теорема существования. Его свойства. Пример вычисления.
- •47.Вопрос.Вычисление двойных интегралов в Декартовой системе координат.
- •48 Вопрос. Замена переменных в двойном интеграле. Двойной интеграл в полярной системе координат.
- •49 Вопрос. Тройной интеграл: его определение,
- •3.2. Вычисление тройного интеграла в декартовых координатах
- •50 Вопрос. Замена переменных в тройном интеграле. Тройной интеграл в цилиндрической системе координат.
- •51 Вопрос. Замена переменных в тройном интеграле. Тройной интеграл в сферической системе координат.
- •52 Вопрос. Приложения кратных интегралов: вычисление объёмов; площадей; статических моментов; центра тяжести; моментов инерции.
- •4.1. Вычисление площади плоской фигуры, занимающей область d
- •4.2. Вычисление объемов с помощью двойного интеграла
- •4.3. Вычисление массы, статических моментов и моментов инерции тонких пластинок
- •4.4. Координаты центра масс пластинки
- •4.5. Приложения тройных интегралов
- •53.Вопрос.Криволинейные интегралы первого рода( понятие, переход к определённому интегралу,свойства,примеры) Криволинейные интегралы. Понятие и примеры решений
- •54.Вопрос.Криволинейные интегралы второго рода(Понятие, переход к определённому интегралу, свойства, примеры)
47.Вопрос.Вычисление двойных интегралов в Декартовой системе координат.
Вычисление двойного интеграла в декартовых координатах
Покажем, что вычисление двойного интеграла сводится к последовательному вычислению двух определенных интегралов.
П
усть
требуется вычислить двойной интеграл
где
функция ƒ(х;у)>=0 непрерывна в области
D. Тогда, как это было показано в п. 7.2,
двойной интеграл выражает объем
цилиндрического тела, ограниченного
сверху поверхностью z=ƒ(х;у). Найдем этот
объем, используя метод параллельных
сечений. Ранее (см. Часть 1, (41.6)) было
показано, что
где S(x) - площадь сечения плоскостью, перпендикулярной оси Ох, a x=a,x=b - уравнения плоскостей, ограничивающих данное тело.
Положим сначала, что область D представляет собой криволинейную трапецию, ограниченную прямыми х=а и х=b и кривыми у=1(x) и у=2(х), причем функции 1(x) и 2(х) непрерывны и таковы, что 1(x) ≤ 2(х) для всех х є [а;b] (см. рис. 7). Такая область называется правильной в направлении оси Оу: любая прямая, параллельная оси Оу, пересекает границу области не более чем в двух точках.
П
остроим
сечение цилиндрического тела плоскостью,
перпендикулярной оси Ох: х =const, где х є
[а; b].
В сечении получим криволинейную трапецию ABCD, ограниченную линиями z=ƒ(х;у), где х=const, z=0, у=1(x) и у=2(х) (см. рис. 8). Площадь S(х) этой трапеции находим с помощью определенного интеграла
Теперь, согласно методу параллельных сечений, искомый объем цилиндрического тела может быть найдентак:
С другой стороны, в п. 7.2 было доказано, что объем цилиндрического тела определяется как двойной интеграл от функции ƒ(х;у) >=0 по области D. Следовательно,
Это равенство обычно записывается в виде
Формула (7.7) представляет собой способ вычисления двойного интеграла в декартовых координатах. Правую часть формулы (7.7) называют двукратным (или повторным) интегралом от функции ƒ(х; у) по области D.
При
этом
называется внутренним интегралом.
Для вычисления двукратного интеграла сначала берем внутренний интеграл, считая х постоянным, затем берем внешний интеграл, т. е. результат первого интегрирования интегрируем по х в пределах от а до b.
Если же область D ограничена прямыми y=c и y=d(c<d), кривыми x=Ψ1(у)и х=Ψ2(у)> причем Ψ1(у)≤Ψ2(у) для всех у є [с;d], т. е. область D - правильная в направлении оси Ох, то, рассекая тело плоскостью у=const, аналогично получим:
Здесь, при вычислении внутреннего интеграла, считаем у постоянным.
Замечания.
1. Формулы (7.7) и (7.8) справедливы и в случае, когда ƒ(х;у)<0, (x;y) e D.
2. Если область D правильная в обоих направлениях, то двойной интеграл можно вычислять как по формуле (7.7), так и по формуле (7.8).
3. Если область D не является правильной ни «по х», ни «по у», то для сведения двойного интеграла к повторным ее следует разбить на части, правильные в направлении оси Ох или оси Оу.
4. Полезно помнить, что внешние пределы в двукратном интеграле всегда постоянны, а внутренние, как правило, переменные.
Пример
7.1. В
ычислить
где
область D ограничена линиями у =x2,
у=0, х+у-2=0.
Решение: На рисунке 9 изображена область интегрирования D. Она правильная в направлении оси Ох. Для вычисления данного двойного интеграла воспользуемся формулой (7.8):
Отметим, что для вычисления данного двойного интеграла можно воспользоваться формулой (7.7). Но для этого область D следует разбить на две области: D1 и D2. Получаем:
Ответ, разумеется, один и тот же.
