- •Билет 1
- •Билет 2
- •Билет 3
- •Билет 4
- •Билет 5 допили
- •Билет 6
- •Билет 8
- •Билет 9
- •Билет 10
- •Билет 12
- •Билет 13
- •Билет 14
- •Билет 15
- •Билет 16
- •Монитор
- •Графопостроитель(плоттер)
- •Принтер
- •Акустическая система
- •Билет 17
- •Билет 18
- •Билет 19
- •Билет 20
- •По типу
- •Билет 21
- •Билет 22
- •Билет 23
- •Билет 24
- •Билет 25
- •Билет 26
- •Архив в формате zip
- •Архив в формате rar
- •Программа архивации Microsoft Backup (резервная копия)
- •Билет 27
- •Билет 28
- •Билет 29
- •Способы описания алгоритмов
- •Билет 30
Билет 5 допили
В каждом компьютере используется некоторая система кодирования символьных данных, сопоставляющая каждому символу - цифре, букве, специальному знаку - определенный двоичный код.
Количество разных символов, которые может различать компьютер, зависит от числа двоичных разрядов, отводимых для кодирования любого символа.
Традиционно для кодирования одного символа используется количество информации, равное 1 байту, то есть I= 1 байт = 8 битов.
Для кодирования одного символа требуется 1 байт информации. Если рассматривать символы как возможные события, то можно вычислить, какое количество различных символов можно закодировать:
N = 2I = 28 = 256
Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и строчные буквы русского и латинского алфавита, цифры, знаки, графические символы и пр.
Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертаниям, а компьютер — по их кодам.
При вводе в компьютер текстовой информации происходит ее двоичное кодирование, изображение символа преобразуется в его двоичный код. Пользователь нажимает на клавиатуре клавишу с символом, и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код символа). Код символа хранится в оперативной памяти компьютера, где занимает один байт.
Компьютеры часто используются для обработки текстовой информации.
Билет 6
Системой счисления называется способ изображения чисел с помощью ограниченного набора символов, имеющих определенные количественные значения. Систему счисления образует совокупность правил и приемов представления чисел с помощью набора знаков
Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления. В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных - не зависит.
Римская непозиционная система счисления. Самой распространенной из непозиционных систем счисления является римская. В качестве цифр в ней используются: I (1), V (5), X (10), L (50), С (100), D (500), М (1000).
Значение цифры не зависит от ее положения в числе. Например, в числе XXX (30) цифра X встречается трижды и в каждом случае обозначает одну и ту же величину - число 10, три числа по 10 в сумме дают 30.
Позиционными называются системы счисления, в которых значение цифры зависит от ее места (позиции) в записи числа. Непозиционными называются системы счисления, в которых значение цифры не зависит от ее места (позиции) в записи числа.
В позиционных системах счисления основание системы равно количеству цифр (знаков в ее алфавите) и определяет, во сколько раз различаются значения одинаковых цифр, стоящих в соседних позициях числа.
Десятичная система счисления имеет алфавит цифр, который состоит из десяти всем известных, так называемых арабских, цифр, и основание, равное 10, двоичная - две цифры и основание 2, восьмеричная - восемь цифр и основание 8, шестнадцатеричная - шестнадцать цифр (в качестве цифр используются и буквы латинского алфавита) и основание 16
Во всех современных ЭВМ для представления числовой информации применяется двоичная система счисления. Это обусловлено:
более простой реализацией алгоритмов выполнения арифметических и логических операций;
более надежной физической реализацией основных функций, так как они имеют всего два состояния (0 и 1);
экономичностью аппаратной реализации всех схем ЭВМ.
Восьмеричная
и шестнадцатеричная системы счисления
являются производными от двоичной, так
как
и
.
Они применяются в основном для более
компактного изображения двоичной
информации, так как запись значения
чисел производится существенно меньшим
числом знаков
В ЭВМ перевод из одной системы в другую осуществляется автоматически, по специальным программам. Правила перевода целых и дробных чисел отличаются.
БИЛЕТ 7
Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.
Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:
Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики
Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики
Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке
Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.
Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.
Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой
Чтобы перевести число из двоичной системы в шестнадцатеричную, его нужно разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, и каждую тетраду заменить соответствующей восьмеричной цифрой
Для перевода восьмеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной триадой.
Для перевода шестнадцатеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной тетрадой.
При переходе из восьмеричной системы счисления в шестнадцатеричную и обратно, необходим промежуточный перевод чисел в двоичную систему.
