- •Обосновать цель и обобщить задачи Государственной программы индустриально-инновационного развития рк на 2015-2019 годы
- •Обосновать, что производство строительных материалов – важный сектор экономики.
- •Обосновать выбор приоритетных видов деятельности в производстве строительных материалов и перечня приоритетных строительных товаров
- •4. Обосновать выбор сырьевых материалов, описать особенности производства стеновой керамики
- •Описать основные минеральные фазы стеновой керамики
- •6. Обобщить теоретические и технологические достижения передового международного опыта; проанализировать состояние, проблемы и перспективы развития производства стеновой керамики в рк и за рубежом
- •7. Обосновать выбор сырьевых материалов, описать особенности производства керамической черепицы
- •11. Обосновать выбор сырьевых материалов, описать особенности производства кислотоупорного кирпича
- •Обосновать выбор сырьевых материалов, описать особенности производства кислотоупорных и термокислотоупорных плиток, кислотоупорных насадочных изделий
- •Описать основные минеральные фазы химически стойкой (кислотоупорной) керамики
- •Обосновать выбор сырьевых материалов, описать особенности производства керамических плиток для полов
- •Обосновать выбор сырьевых материалов, описать особенности производства керамических фасадных плиток
- •Обосновать выбор сырьевых материалов, описать особенности производства облицовочных глазурованных плиток
- •Обосновать выбор сырьевых материалов, описать особенности производства керамогранита
- •Описать основные минеральные фазы керамических плиток
- •Обосновать выбор сырьевых материалов, описать особенности производства санитарных керамических изделий
- •Опишите основные минеральные фазы санитарных керамических изделий
- •Обосновать выбор сырьевых материалов, описать особенности производства керамзита и аглопорита
- •26. Обосновать выбор сырьевых материалов, описать особенности производства вспученного перлита
- •27. Обосновать выбор сырьевых материалов, описать особенности производства вспученного вермикулита
- •29. Обосновать выбор сырьевых материалов, описать особенности производства динасовых огнеупоров
- •31. Описать основные минеральные фазы динасовых огнеупоров
- •32. Обосновать выбор сырьевых материалов, описать особенности производства алюмосиликатных огнеупоров
- •34. Описать основные минеральные фазы алюмосиликатных огнеупоров
- •35. Обосновать выбор сырьевых материалов, описать особенности производства магнезиальных (периклазовых) огнеупоров
- •37. Описать основные минеральные фазы магнезиальных огнеупоров
- •38. Обосновать выбор сырьевых материалов, описать особенности производства цирконистых огнеупоров
- •Обосновать выбор сырьевых материалов, описать особенности производства углеродсодержащих огнеупоров
- •Обосновать выбор сырьевых материалов, описать особенности производства карбидкремниевых огнеупоров
- •Обосновать выбор сырьевых материалов, описать особенности производства листового стекла
- •Обобщить теоретические и технологические достижения передового международного опыта; проанализировать состояние, проблемы и перспективы развития производства листового стекла в рк и за рубежом
- •Обосновать выбор сырьевых материалов, описать особенности производства стекловолокна
- •Обобщить теоретические и технологические достижения передового международного опыта; проанализировать состояние, проблемы и перспективы развития производства стекловолокна в рк и за рубежом
- •Обосновать выбор сырьевых материалов, описать особенности производства портландцемента
- •49. Описать основные минеральные фазы клинкера для производства портландцемента
- •50. Обобщить теоретические и технологические достижения передового международного опыта; проанализировать состояние, проблемы и перспективы развития производства портландцемента в рк и за рубежом
- •51. Обосновать выбор сырьевых материалов, описать особенности производства воздушной и гидравлической извести
- •53. Обосновать выбор сырьевых материалов, описать особенности производства гипса для строительных целей
- •55. Обосновать выбор сырьевых материалов, описать особенности производства асбестоцемента
- •56. Обобщить теоретические и технологические достижения передового международного опыта; проанализировать состояние, проблемы и перспективы развития производства асбестоцемента в рк и за рубежом
- •57. Обосновать выбор сырьевых материалов, описать особенности производства тяжелого бетона
- •Обосновать выбор сырьевых материалов, описать особенности производства легкого бетона
- •Обосновать выбор сырьевых материалов, описать особенности производства фибробетона
- •Описать классификации минералов, объяснить геологические процессы образования минералов
- •Обобщить и описать морфологические особенности кристаллов минералов
- •Перечислить физические свойства кристаллов (минералов), диагностические признаки минералов; описать макроскопические методы определения минералов
- •Описать классификацию магматических горных пород; объяснить геологические процессы образования магматических горных пород
- •Дать оценку магматическим горным породам в качестве сырьевых материалов, обосновать их практическое значение - перидотиты, дуниты, пироксениты, серпентиниты, кимберлиты
- •Дать оценку магматическим горным породам в качестве сырьевых материалов, обосновать их практическое значение - габбро, базальты, диабазы
- •Дать оценку магматическим горным породам в качестве сырьевых материалов, обосновать их практическое значение - диориты, андезиты, сиениты, порфириты
- •Дать оценку магматическим горным породам в качестве сырьевых материалов, обосновать их практическое значение - граниты, липарит, кварцевый порфир, обсидиан, перлит, пемза
- •Описать классификацию осадочных горных пород; объяснить геологические процессы образования обломочных, химических, биохимических (органогенных) горных пород
- •Дать оценку крупно- и среднеобломочным породам в качестве сырьевых материалов, обосновать их практическое значение - глыбы, валуны, щебень, галечник, дресва, гравий, брекчия, конгломерат
- •Дать оценку крупно- и среднеобломочным породам в качестве сырьевых материалов, обосновать их практическое значение - пески, песчаники.
- •Дать оценку мелкообломочным породам в качестве сырьевых материалов, обосновать, их практическое значение - лесс, лессовидные суглинки.
- •Дать оценку глинистым породам в качестве сырьевых материалов, обосновать их практическое значение - глины, аргиллиты, супеси, суглинки
- •Дать оценку химическим и биохимическим породам в качестве сырьевых материалов, обосновать их практическое значение – бокситы, фосфориты
- •Дать оценку химическим и биохимическим породам в качестве сырьевых материалов, обосновать их практическое значение – доломиты, известняки, ракушечники
- •Дать оценку химическим и биохимическим породам в качестве сырьевых материалов, обосновать их практическое значение – мел, травертины, мергель
- •Дать оценку химическим и биохимическим породам в качестве сырьевых материалов, обосновать их практическое значение – диатомиты, трепел, опоки, яшмы
- •Дать оценку химическим и биохимическим породам в качестве сырьевых материалов, обосновать их практическое значение – гипс, ангидрит
- •Дать оценку химическим и биохимическим породам в качестве сырьевых материалов, обосновать их практическое значение – галит, сильвин, карналлит, мирабилит, бораты.
- •Дать оценку каустобиолитам в качестве сырьевых материалов, обосновать их практическое значение – бурый уголь, каменный уголь, антрацит
- •Дать оценку каустобиолитам в качестве сырьевых материалов, обосновать их практическое значение – торф, горючие сланцы, нефть и горючие газы, асфальт, озокериты, янтарь.
- •Описать классификацию метаморфических горных пород; объяснить геологические процессы образования метаморфических горных пород
- •Дать оценку метаморфическим горным породам в качестве сырьевых материалов, обосновать их практическое значение – серпентиниты, глинистые сланцы, тальковые сланцы, кристаллические сланцы
- •Дать оценку метаморфическим горным породам в качестве сырьевых материалов, обосновать их практическое значение – кварциты, железистые кварциты
- •Дать оценку метаморфическим горным породам в качестве сырьевых материалов, обосновать их практическое значение – мрамор, гнейсы
- •Объяснить сущность метода дта, его основные принципы, возможности, достоинства, недостатки; перечислить основные факторы, влияющие на результаты дта
- •Объяснить сущность метода термогравиметрии (тг) и метода дифференциальных термогравиметрических кривых (дтг)
- •Обосновать идентификацию огнеупоров по их минеральному составу
- •Обобщить сведения о минерально-сырьевой базе производств строительной керамики в рк, юко - оценить сырьевое обеспечение конкретных видов строительных материалов
- •Обобщить сведения о минерально-сырьевой базе производств огнеупорных изделий в рк, юко - оценить сырьевое обеспечение конкретных видов огнеупоров
- •Выполнить сравнительный анализ месторождений каолиновых, огнеупорных и тугоплавких глин, пригодных для производства строительной керамики и огнеупоров в рк, юко
- •Выполнить сравнительный анализ месторождений суглинков и лессовидных суглинков, пригодных для производства керамического кирпича в рк, юко
- •Выполнить сравнительный анализ месторождений бентонитов, пригодных для производства керамзита в рк, юко
- •Выполнить сравнительный анализ месторождений полевошпатового сырья, пригодного для производства строительной керамики в рк, юко
- •Выполнить сравнительный анализ месторождений вермикулитового сырья, пригодного для производства вспученного материала в рк, юко
- •Выполнить сравнительный анализ месторождений перлитов, пригодных для производства вспученных материалов в рк, юко
- •Выполнить сравнительный анализ месторождений волластонитового сырья, пригодного для производства строительной керамики в рк, юко
- •Выполнить сравнительный анализ месторождений талькового и пирофиллитового сырья, пригодного для производства огнеупоров и строительной керамики в рк, юко
- •Обобщить сведения о минерально-сырьевой базе производства стекла в рк, юко - оценить сырьевое обеспечение производства листового стекла
- •Выполнить сравнительный анализ месторождений песков, пригодных для производства стекла в рк, юко
- •Обобщить сведения о минерально-сырьевой базе производства цемента в рк, юко - оценить сырьевое обеспечение
- •Обобщить сведения о минерально-сырьевой базе производства асбестоцемента в рк, юко - оценить сырьевое обеспечение
- •Обобщить сведения о минерально-сырьевой базе производства извести в рк, юко - оценить сырьевое обеспечение
- •Обобщить сведения о минерально-сырьевой базе производства строительного гипса в рк, юко - оценить сырьевое обеспечение
- •Выполнить сравнительный анализ месторождений сырьевых источников глинистых и суглинистых компонентов для цементной шихты в производстве портландцемента в рк, юко
- •Выполнить сравнительный анализ месторождений сырьевых источников карбонатного компонента для цементной шихты в производстве портландцемента в рк, юко
- •Выполнить сравнительный анализ месторождений сырьевых источников кремнеземистого компонента для цементной шихты в производстве портландцемента в рк, юко
- •Выполнить сравнительный анализ месторождений асбестового сырья рк, юко
- •Выполнить сравнительный анализ месторождений гипсо-ангидритного сырья рк, юко
- •124. Выполнить сравнительный анализ месторождений карбонатных пород для выжига извести в рк, юко
- •Обобщить сведения, обосновать тенденции в развитии производства строительных материалов в зарубежных странах
Объяснить сущность метода дта, его основные принципы, возможности, достоинства, недостатки; перечислить основные факторы, влияющие на результаты дта
Дифференциальный термический анализ (ДТА) — метод исследования, заключающийся в нагревании или охлаждении образца с определенной скоростью и записи временной зависимости разницы температур между исследуемым образцом и образцом сравнения (эталоном), не претерпевающим никаких изменений в рассматриваемом температурном интервале.
Метод используется для регистрации фазовых превращений в образце и исследования их параметров. ДТА — один из вариантов термического анализа.
Дифференциально-термический анализ (ДТА) основан на определении температуры, при которой нагреваемый образец претерпевает какие-либо превращения (физические или химические), сопровождающиеся тепловым эффектом. Так, при окислении теплота будет выделяться, при термическом разрушении - поглощаться.Существует много различных приборов для ДТА, отличающихся устройством нагревательного элемента, регистрирующих приборов и т.п. Однако принцип действия этих приборов в общем один и тот же. Если подвергнуть одновременному нагреванию два образца, в одном из которых (испытуемом) происходят изменения, а в другом (эталонном) изменений не происходит, то тепловые потоки, а следовательно, и температуры образцов будут различными. Разность в температурах в исследуемом образце и эталоне характеризует интенсивность процесса, а температура, при которой наблюдается экстремальная разность, указывает условия протекания процесса.
Объяснить сущность метода термогравиметрии (тг) и метода дифференциальных термогравиметрических кривых (дтг)
Наряду с методом дифференциально-термического анализа веществ активно развивалась и вторая ветвь термического анализа - метод термогравиметрии. С помощью последнего можно с высокой степенью точности проследить за изменением массы пробы при повышении температуры.
Термогравиметрия - это развитие метода исследования, заключающегося в измерении изменения массы образцов при нагревании. Первоначальную схему метода можно представить следующим образом: пробу нагревали до определенной температуры, затем охлаждали и после охлаждения взвешивали с аналитической точностью. Процесс повторяли циклически, каждый раз увеличивая температуру. Если результаты взвешивания, относящиеся к отдельным температурным значениям, представить в координатах температура - масса образца и соединить полученные точки, то получится кривая, именуемая термогравиметрической (ТГ).Описанный метод является исключительно длительным и неточным, но применяется и сегодня, например, при аналитическом определении потери массы при прокаливании вещества. Значительно быстрее и точнее проводить измерения с помощью термовесов, непрерывно регистрирующих изменение массы пробы.
Принцип работы термовесов следующий. Пробу помещают в тигель (рис. 3), опирающийся на коромысло весов. Затем тигель нагревают в электрической печи так, чтобы его температура равномерно повышалась. Температура печи измеряется с помощью находящейся в ней термопары, к концам которой подключен милливольтметр, и время от времени (например, каждые 5...10 К) масса образца фиксируется. Графически изображенные результаты измерения дают термогравиметрическую кривую (рис. 4). Если изменение массы регистрируется автоматически, кривая ТГ строится в зависимости не от температуры, а от времени, однако такая замена оси абсцисс обратима, если одновременно фиксируется и зависимость температуры в печи от времени. Наиболее просто замена оси абсцисс осуществляется в том случае, когда повышение температуры в печи происходит равномерно во времени.
Дифференциальная термогравиметрия В оба тигля помещались одинаковые по массе пробы, которые нагревались при помощи двух точно регулируемых электрических печей так, чтобы температура нагрева одной отставала на 4 K от температуры другой. В результате этого тождественные реакции в пробах происходили смещенно друг относительно друга во времени. Весы Де Кейзера по сути дела обнаружили фазовый сдвиг (рис. 6). Если, например, масса пробы, находящейся в печи более высокой температуры (кривая 1), начала при данной температуре (точка а) уменьшаться, тогда в соответствии с уменьшением массы, на весах наблюдалось отклонение. После увеличения температуры на 4 K начиналось разложение и во втором тигле (точка а на кривой 2).
Равновесное положение весов определялось результирующей двух момен-тов вращения противоположного направления - непрерывно изменяющейся величиной. Таким образом, вначале по мере ускорения разложения увеличивалось и отклонение весов (кривая 5). Однако с момента понижения скорости разложения пробы более высокой температуры отклонение весов становилось меньше (рис. 6). Поскольку в пробе еще до окончания разложения началась и вторая реакция разложения, весы возвращались в исходное равновесное положение е`` после отклонения сначала в увеличивающуюся с``-d``, а затем в уменьшающуюся d``-e`` стороны.
В области инструментальной аналитики конструкторы стремились улучшить возможность оценки основной кривой исследуемого изменения двумя путями: разработкой, с одной стороны, дифференциальных методов (дифференциальный термоанализ, дифференциальная полярография и т. д.), а с другой - разработкой деривативных методов (деривативная полярография). Заслугой де Кейзера является то, что разработанный им дифференциальный метод натолкнул исследователей на мысль о возможности применения вычислительных методов в области термогравиметрии.
С точки зрения математики, отраженный от зеркальца весов световой сигнал записал на фотопленке примитивную разность зависимостей изменения веса, отстоящих друг от друга на температурный интервал в 4 K. Полученная кривая, несомненно, аналогична зависимости производной, но не тождественна ей, как можно судить об этом на основании рис. 6. Здесь изображены кривые изменения массы (кривые 1 и 2), относящиеся к температурным значениям Т и Т-4, а также их разность (кривая 5). Кроме того, на рисунке представлены также кривые, которые могли бы получиться при разности температур двух печей не 4 K, а 8 K (кривые 3 и 6) или же 16 K (кривые 4 и 7). Как следует из анализа данных, проиллюстрированных рис. 6, ход "разностной" кривой зависит от величины смещения температур в печах (кривые 5, 6 и 7).
Это означает, что разница температур в 4 K между обеими печами должна все время точно соблюдаться. Кроме того, при заполнении тиглей необходимо следить, чтобы оба материала были уплотнены в одинаковой мере для соблюдения неизменности смещения фаз между процессами разложения обоих образцов, и, как следствие, отсутствия перекрытия или перекрещивания процессов разложения. В предложенном методе безусловно неблагоприятным моментом является то, что аппаратом записывается только "разностная" кривая, а соответствующая ей кривая ТГ должна определяться отдельным испытанием.
Обобщить возможности электронно-микроскопических исследований сырья, силикатных материалов
Описать особенности идентификация минералов под электронным микроскопом, методы идентификации минералов по электронно-микроскопическим снимкам
Объяснить особенности расшифровки фазового состава минеральных смесей спомощью электронного микроскопа
Сравнить и обобщить возможности просвечивающего электронного микроскопа (ПЭМ), растрового электронного микроскопа (РЭМ), сканирующего электронного микроскопа (СЭМ) для исследования силикатных материалов
Обобщить особенности электронной микроскопии вяжущих материалов
Электронная микроскопия, совокупность электронно-зондовых методов исследования микроструктуры твердых тел, их локального состава и микрополей (электрических, магнитных и др.) с помощью электронных микроскопов (ЭМ) - приборов, в которых для получения увеличенных изображений используют электронный пучок. Электронная микроскопия включает также методики подготовки изучаемых объектов, обработки и анализа результирующей информации. Различают два главных направления электронной микроскопии: трансмиссионную (просвечивающую) и растровую (сканирующую), основанных на использовании соответствующих типов ЭМ. Они дают качественно различную информацию об объекте исследования и часто применяются совместно. Известны также отражательная, эмиссионная, оже-электронная, лоренцова и иные виды электронной микроскопии, реализуемые, как правило, с помощью приставок к трансмиссионным и растровым ЭМ.
Некоторые основные понятия. Электронный луч -направленный пучок ускоренных электронов, применяемый для просвечивания образцов или возбуждения в них вторичных излучений (например, рентгеновского). Ускоряющее напряжение - напряжение между электродами электронной пушки, определяющее кинетическую энергию электронного луча. Разрешающая способность (разрешение) -наименьшее расстояние между двумя элементами микроструктуры, видимыми на изображении раздельно (зависит от характеристик ЭМ, режима работы и свойств образцов). Светлопольное изображение - увеличенное изображение микроструктуры, сформированное электронами, прошедшими через объект с малыми энергетическими потерями [структура изображается на экране электроннолучевой трубки (ЭЛТ) темными линиями и пятнами на светлом фоне]. Темнопольное изображение формируется рассеянными электронами (основной пучок электронов при этом отклоняют или экранируют) и используется при изучении сильнорассеивающих объектов (например, кристаллов); по сравнению со светлопольным выглядит как негативное.
Обобщить особенности электронной микроскопии керамики
Обосновать идентификацию изделий строительной керамики по их минеральному составу
Обосновать идентификацию вяжущих материалов по их минеральному составу
5 деңгей
Объяснить особенности идентификации горных пород, сырьевых материалов по их минеральному составу
Го́рные поро́ды — плотные или рыхлые агрегаты, слагающие земную кору, состоящие из однородных или различных минералов, либо минералов и обломков других горных пород[2]. Состав, строение и условия залегания пород находятся в причинной зависимости от формирующих их геологических процессов, происходящих внутри земной коры или на её поверхности. С геохимической точки зрения горные породы — естественные агрегаты минералов, состоящих преимущественно из петрогенных элементов (главных химически элементов породообразующих минералов.
По происхождению горные породы делятся на три группы:
Магматические (эффузивные и интрузивные)
Осадочные
Метаморфические
Магматические и метаморфические горные породы слагают около 90 % объёма земной коры, однако на современной поверхности материков области их распространения сравнительно невелики. Остальные 10 % приходятся на долю осадочных пород, занимающие 75 % площади земной поверхности.
Магматические горные породы по своему происхождению делятся на эффузивные и интрузивные. Эффузивные (вулканические) горные породы образуются при изливании магмы на поверхность Земли. Интрузивные горные породы, напротив, возникают при изливании магмы в толще земной коры.
