
Основы наноелектроники / Основы наноэлектроники / ИДЗ / Книги и монографии / Наноматериалы, методы, идеи. Сборник научных статей, 2007, c.206
.pdf
by the relation Q eff T / z. Comparing the above two expressions for <2, and using the formal solution (6) we obtain
|
|
1 |
|
1 |
|
|
keff |
|
k | C |
| k . |
(7) |
||
T |
||||||
|
|
|
|
|
To derive an exact and analytical expression for thermal conductivity coefficient (7) it is necessary to introduce a complete set of orthonormal two-dimensional vectors | п) (п = 1,2,3,...) belonging to the infinitedimensional Hilbert space with scalar product (5). In principle, the particular choice of the basis is not essential, but for the convenience of calculations it is useful to specify at least four of them. It's convenient to chose the first of them to correspond to the total momentum of quasiparticles and the second one to be orthogonal, but still linear in momentum [20]:
|
1 |
|
1 |
|
|
p1 |
, |
|
|
2 |
|
|
1 |
|
|
2 1 |
, |
(8) |
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
p2 |
|
|
|
|
|
|
1 2 |
|
|
1 2 |
|
|
where p i =( p i |p i ) is the normal density of the zth component, p = p1
+ p2. The third and the fourth vectors correspond to the energy flux:
|
|
|
|
1 |
k1 |
|
|
|
1 |
|
0 |
|
|
|
3 |
|
|
, |
|
4 |
|
|
|
, |
(9) |
|
Nk1 |
Nk2 |
||||||||||
|
|
|
0 |
|
|
k 2 |
|
|||||
where |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
SjT |
|
|
|
|
||
|
|
|
|
|
|
|
p |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|||
|
kj |
|
|
|
|
|
|
|
, |
(10) |
|||
|
|
|
T |
j f |
|
pj |
|
|
j |
|
|||
|
|
|
|
|
|
|
|
|
|
|
|||
and |
Nkj |
|
kj |
| kj |
is the corresponding normalization coefficient. |
Partial entropy of quasiparticle subsystem Sj in eq. (10) is given by the relation
S |
|
|
1 |
|
| p |
|
. |
(11) |
|
|
|
||||||
|
j |
|
T j j |
|
j |
|
|
Formally, the kinetic problem of two-component quasiparticles system can be solved in the above basis set. The inversion of the operator matrix С in Eq. (7) is similar to the procedure described in Ref. [20]. The final result contains infinite dimensional non-diagonal matrices. To
21
obtain closed form expressions we must use some approximations, correct r-approximation [19] or Kihara approximation [20, 22, 23]. In some physical situations we are able to obtain closed analytical expressions. It is rigorously proved in [20] that in case of quasiequilibrium within each subsystem of quasiparticles, the corresponding transport coefficient can be obtained in close analytical form. This is a reliable approximation when the low temperature relaxation is mainly governed by the defect scattering processes. The approximation formally implies that all the matrix elements of matrix S in eq. (7) tend to infinity. The thermal conductivity coefficient in this case can be obtained in the form: eff F D . Here we separate the flux part of
thermal conductivity coefficient F F S2T / with S = S1 + S2 , which approaches infinity when the quasiparticles do not interact with
scatterers, |
|
|
|
|
|
|
|
|
|
|
|
|
|
and |
|
|
|
|
the |
|
|
diffusive |
|||||||
part D D S1T / 1 S2T / 2 1 2 |
/T |
|
The |
|
corresponding |
||||||||||||||||||||||||
relaxation times are given by |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
1 |
|
|
1 |
|
|
2 |
|
|
|
1 |
1 |
1 |
1 |
|
|
|
|
|
|
|
||||||||
D |
|
|
|
|
|
23 |
|
|
|
|
|
|
13 |
12 |
21 |
|
, |
|
|
|
|
(12) |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
S |
|
|
|
|
|
S |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
1 |
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
1 |
||||||||
F |
D |
|
|
|
231 |
|
|
|
|
|
131 |
121 |
211 |
|
131 |
231 |
121 |
231 |
211 |
131 |
(13) |
||||||||
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
S |
|
|
|
|
|
S |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
Relaxation times contained in formulas (12) - (13) are defined by |
|
||||||||||||||||||||||||||||
1 |
1 |
|
j |
|Ckj |
|
|
| j . |
|
|
|
|
|
|
|
|
|
|
||||||||||||
kj |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(14) |
||||||||||||||
|
k |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
We-emphasize that they are not actual scattering times, which are momentum dependent, but are relaxation times associated with corresponding scattering mechanisms. Once we obtain the particular scattering rate Vkj (pk ) from standard scattering theory, we can replace
true collision operator Ck with Vkj (pk ), so that the corresponding
relaxation time can be calculated by
22
1 |
1 |
2 |
k |
|
f (0) |
|
|
|
k |
|
|
||||||
kj |
k |
k kj |
|
dГk |
(15) |
|||
k |
||||||||
|
|
|
|
|
|
|
As can be seen from the derived formulas, the coefficient of thermal conductivity contains different relaxation times in rather non-trivial combination. If drop out one component (say set S2 =0, p2 =0) we recover the usual result F(1) 13S12T / 1. For phonons with linear
dispersion |
= vp1,kF |
reduces |
|
to the well-known result |
||||||
ph |
C |
|
2 |
13 |
/3,, where |
C |
ph |
3S |
ph |
is the heat capacity of phonon |
F |
|
ph |
|
|
|
|
gas.
The main advantage of our approach is its universality. In fact till now we have not restricted ourselves to any particular dimensionality of the system or any quasiparticles dispersion. All the necessary information is contained in the corresponding relaxation times and thermodynamic quantities. This formalism allows us to analyze contributions from different relaxation mechanisms to the total thermal conductivity coefficient. Given the dispersion relations of quasiparticles, we can easily calculate all the quantities contained in (12) - (13).
With Eqs. (12) - (13) we are able to address the competition between relaxation processes of the flexural and phonon modes. Glavin [14] noted that such a competition can be essential at extremely low temperatures if the dominant relaxation mechanism is elastic scattering on defects, where he argued that thermal conductivity coefficient would scale as T1/2. Our approach allows us to study this competition comprehensively. Particularly, we predict the strong dependence of the temperature scaling exponent on the wire diameter. The standard Fermi golden rule approach [14] gives the momentum dependent scattering
rates for different modes |
|
W |
p1/2 |
, |
|
|
W |
1 |
,where |
|
|
|
pu3a3 |
||||||
|
13 |
13 u3a3/2 |
|
|
23 |
23 |
|
||
|
|
1 |
|
|
|
|
2 |
|
Wkj are the corresponding scattering amplitudes, which depend on the physical properties of particular material. Using Eq. (15) it is easy to show, that the corresponding relaxation times scale as
131 a 3/2T1/2, |
231 a 5/2T 1/2. |
(16) |
Different temperature dependence of relaxation times lead to a strong competition between two physically different mechanisms of thermal
23

conductivity, flux and diffusive. The dominance of one over the other strongly depends on the wire diameter at a given temperature. To make some specific conclusions let us summarize the approximations done and specify the range of validity of the proposed theory. We consider a situation when thermal excitations are multiply scattered elastically while being transferred through the wire, so that other scattering mechanisms are strongly suppressed by interaction with defects. Only for this case we were able to drop relaxation within each subsystem of identical quasiparticles to obtain closed expressions (12), (13). The influence of boundary is accounted in the dispersion of flexural mode and in the dimensionality of the system. The range of temperature is supposed to satisfy the relationT , where ~ 1/a is the characteristic value of the frequency gap between the adjacent phonon branches. For larger temperature we cannot use the acoustic modes (1) only, but need to account higher branches.
In Figure 1 we compare our theoretical results with the experimental data from [11]. We have chosen the unknown parameters W13 1.2 10 44 m5s 4 and W23 0.9 10 44 m5s 4 to fit data for a = 22nm. Deviations from the experimental data for large diameters and temperatures show the restriction of applicability of our initial approximations. They arise from the Debye approximation and simplified dispersion expression.
Temperature (К)
FIG. 1: Thermal conductivity coefficient calculated from Eqs. (12) and (13) for different values of nanowire diameter. Experimental data are from Ref. [11].
24

Additionally, when the diameter of the wire increases, the mechanism we consider becomes less dominant. To be more precise we need to include higher excitation branches as well as another relaxation mechanisms. However our approach allows to understand the physics of the processes in the region under consideration. Clearly, observed crossover is the result of competition between f Т1/2 and KD Т3.
For smaller diameters, f is strongly dominant in the wide range of temperatures as shown on Figure 2 for wire diameter a = 2nm.
Temperature (K)
FIG. 2: Comparative contribution from flux and diffusive parts of thermal conductivity for a 2nm wire.
Figure 3 demonstrates a complete crossover from T1//2 to T3 dependence for the nanowire of a = 30nm. It can be seen that the T dependence between 20K and 40K is nearly linear, which was observed in the experiment [11]. It should be noted that T3 dependence ofD cannot be interpreted in simple analogy with the bulk case. It comes not from a specific heat directly, but from different sources including competition of the relaxation times in Eqs. (12), (13).
25

In summary, we derived the general analytical expressions (12) - (13), to explicitly calculate the contributions of different scattering mechanisms to the total relaxation of the system. The simple expressions clarify the essential effects leading to the observed behavior of thermal conductivity coefficient. It is clear that the particular dispersion laws (and their reconstruction) affect scattering rates and thermodynamic quantities. Restricted geometry and low dimensionality lead to additional scattering mechanisms. When applied to the regime, where phonon modes compete with flexural ones, our theory agrees favorably with available experimental data. Furthermore, we showed that the thermal conductivity coefficient changes from
approximately T1/2 -dependence to T3-dependence with increasing temperature. In view of our theoretical results it is useful to investigate smaller diameters or lower temperatures with fixed diameters in experiment to better reveal the crossover from T3 to T1/2 dependence.
We would like to thank Prof. Peidong Yang and Dr. Deyu Li for providing us the experimental data. This research was supported by the Czech Ministry of Education under the project Centre of Modern Optics (LC06007) and the NSF Career Award.
[1] M. A. Ratner, B. Davis, M. Kemp, V. Mujica, A. Roitberg, and S. Yaliraki, Ann. NY Acad. Sci. 852, 22 (1998).
26
[2]V. Pouthier, J. C. Light, and С Girardet, J. Chem. Phys. 114, 4955 (2001).
[3]D. M. Leitner and P. G. Wolynes, Phys. Rev. E 61, 2902 (2000).
[4]A. Buldum, D. M. Leitner, and S. Ciraci, Europhys. Lett. 47, 208 (1999).
[5]L. Hui, B. L. Wang, J. L. Wang, and G. H. Wang, J. Chem. Phys. 120, 3431 (2004). [6] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and С. М. Lieber, Nano Letters 3, 149 (2003).
[7]P. Poncharal, С Berger, Y. Yi, Z. L. Wang, and W. A. de Heer, J. Phys. Chem. В 106, 12104 (2002).
[8]L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett. 81, 232 (1998).
[9]H. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Nature 404, 974 (2000).
[10]D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin,and S. R. Phillpot, Appl. Phys. Lett. 83, 2934 (2003).
[11]D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).
[12]N. Mingo, Phys. Rev. В 68, 113308 (2003).
[13]I. N. Adamenko, K. E. Nemchenko, A. V. Zhukov, C. I. Urn, T. F.
George, and L. N. Pandey, J. Low Temp. Phys. 111, 145 (1998).
[14]В. A. Glavin, Phys. Rev. Lett. 86, 4318 (2001).
[15]N. Nishiguchi, Y. Ando, and M. N. Wybourne, J. Phys. Condens. Matt. 9, 5751 (1997).
[16]B. A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973).
[17]I. N. Adamenko, A. V. Zhukov, and К. Е. Nemchenko, Fiz. Nizk. Temp. 22, 1470 (1996).
[18]I. N. Adamenko and К. Е. Nemchenko, Fiz. Nizk. Temp. 22, 995 (1996).
[19]I. N. Adamenko, К. Е. Nemchenko, and A. V. Zhukov, J. Low Temp. Phys. 111, 387 (1998).
[20]A. V. Zhukov, Phys. Rev. E 66, 041208 (2002).
[21]L. Hui, F. Pederiva, G. H. Wang, and B. L. Wang, J. Chem. Phys. 119, 9771 (2003).
[22]T. Kihara, Imperfect Gases (Asakusa Bookstore, Tokyo, 1949).
[23]E. A. Mason, J. Chem. Phys. 27, 782 (1957).
27
ПЕРИОДИЧЕСКИЕ ТОКОВЫЕ ДОМЕНЫ В ПУЧКАХ УГЛЕРОДНЫХ НАНОТРУБОК
М.Б. Белоненко*), Е.В. Демушкина, Н.Г. Лебедев Волгоградский государственный университет, пр-т Университетский, 100, г. Волгоград, 400062, Россия, E-mail: nikolay.lebedev@volsu.ru,
*) Лаборатория Нанотехнологий ВПО НОУ ВИБ, ул. Южно-Украинская, 2, г. Волгоград, 400064, Россия E-mail: mbelonenko@yandex.ru
В работе исследуется динамика распространения периодических электромагнитных волн и индуцируемого ими тока в пучках углеродных нанотрубок. Рассмотрение проводится на основе анализа связанных уравнений на классическую функцию распределения электронов углеродных нанотрубок и уравнений Максвелла для электромагнитного поля. Получено эффективное уравнение, описывающее динамику электромагнитного поля. Выявлены периодические изменения формы электромагнитной волны при распространении в углеродной среде. Соответствующие области тока, протекающего через углеродные нанотрубки, образуют периодическую доменную структуру.
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 07-03-96604).
Введение
Развитие современных технологий предъявляет все более высокие требования к научным разработкам, в особенности в области явлений наномасштабных структур [1]. Уникальные свойства углеродных нанотрубок (УНТ) [2] привели к их широкому изучению и применению в рамках нелинейной оптики. Одним из основных и наиболее перспективных направлений в этой области является исследование распространения в УНТ ультракоротких импульсов света (оптических солитонов) [3 - 5]. В качестве одной из основных целей современной оптики является создание полностью оптических приборов, в которых светом можно управлять с помощью света [5]. Это привело к тому, что в последнее время наблюдается бурный рост исследования
28

оптических эффектов, связанных с взаимодействием электромагнитных солитонов. Этот интерес стимулируется как успешными экспериментами, в которых получены многомерные оптические солитоны (устойчивые локализованные световые структуры), так и появлением новых материалов, являющихся достаточно перспективными для построения полностью оптических приборов. Поскольку нелинейные свойства УНТ в оптическом диапазоне широко известны [3, 4, 6], задача поиска оптических солитонов в УНТ представляется достаточно важной и актуальной. Все вышесказанное и стимулировало данную работу.
Модель
Исследование электронной структуры УНТ приведено в достаточно большом количестве работ [2] и, как правило, проводится в рамках анализа динамики π-электронов в приближении сильной связи. Так, закон дисперсии, который описывает электронно-энергетические свойства графена, имеет вид:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
1 4cos( apx )cos( apy / |
3 ) 4cos2(apy / |
3 ) , |
||||||||
E( p ) |
||||||||||
где γ ≈ 2.7 |
эВ, a 3b / 2 , b 0.142 |
нм – расстояние между |
||||||||
соседними атомами углерода в графене, |
p ( px ,py ). Для УНТ |
|||||||||
типа «zig-zag» (m,0) дисперсионное уравнение имеет вид: |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
1 4cos(apz )cos( s / m) 4cos2( s / m), |
(1) |
|
||||||||
E( p) |
|
где квазиимпульс p задается как ( pz ,s), s 1, 2 ... m.
При построении модели распространения ультракороткого оптического импульса в пучках нанотрубок, в случае геометрии, представленной на рисунке 1, будем описывать электромагнитное поле импульса классически, на основании уравнений Максвелла
|
|
|
|
|
|
|
|
|
1 |
|
A |
|
|
|
[7]. Так, в калибровке E |
|
уравнения Максвелла с учетом |
||||||||||||
c |
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
t |
|
|||
диэлектрических и магнитных свойств УНТ можно записать как |
||||||||||||||
|
2A |
|
1 2A |
4 |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
j 0, |
(2) |
|||||
|
x2 c2 t2 |
c |
||||||||||||
|
|
29

причем здесь пренебрегается дифракционным расплыванием лазерного пучка в направлениях, перпендикулярных оси
распространения. Вектор-потенциал A считается имеющим вид
A (0,0,Az( x,t )).
Рис. 1. Геометрия задачи Для определения тока воспользуемся полуклассическим
приближением [8], взяв закон дисперсии (1) из квантово механической модели и описывая эволюцию ансамбля частиц классическим кинетическим уравнением Больцмана в приближении времен релаксации:
f |
|
q |
|
Az |
|
f |
|
F0 f |
, |
(3) |
t |
c t |
|
pz |
|
||||||
|
|
|
|
|
где F0 – равновесная функция распределения Ферми.
Время релаксации можно оценить согласно [9] как примерно 3 10–13 с. Отметим также, что при записи уравнения (3) пренебрегалось эффектами, связанными с неоднородностью электромагнитного поля вдоль оси нанотрубки.
Уравнение (2) легко решается методом характеристик [10]:
30