- •Министерство образования республики Беларусь
- •Введение
- •Раздел 1 Механика Лекция 1 Кинематика
- •1.1 Предмет, задачи и основные понятия механики
- •1.2 Тангенциальное, нормальное и полное ускорение
- •1.3 Угловая скорость и угловое ускорение
- •1.4 Неравномерное движение по окружности
- •2.2 Силы упругости, закон Гука
- •2.1 Законы Ньютона, фундаментальные взаимодействия
- •2.2 Силы упругости, закон Гука
- •2.3 Силы трения, коэффициент трения
- •2.4 Гравитационные силы, закон всемирного тяготения
- •3.1 Законы сохранения и свойства пространства и времени
- •3.2 Импульс тела, закон сохранения импульса
- •3.3 Уравнение движения тела переменной массы
- •3.4 Формула Циолковского
- •Лекция 4 Работа и энергия, закон сохранения энергии
- •4.2 Кинетическая энергия
- •4.3 Консервативные и неконсервативные силы
- •4.4 Закон сохранения энергии в механике
- •5.1 Момент силы и момент инерции
- •5.2 Теорема Штейнера
- •5.3 Уравнение динамики вращательного движения
- •5.4 Момент импульса и закон его сохранения
- •6.1 Законы Кеплера и закон всемирного тяготения
- •6.2 Неинерциальные системы отсчета, силы инерции
- •6.3 Центробежные силы инерции
- •6.4 Сила Кориолиса
- •7.1 Колебательное движение. Виды колебаний
- •7.2 Гармонические колебания, маятники
- •7.3 Затухающие и вынужденные колебания
- •7.4 Механические волны
- •Лекция 8 Основы специальной теории относительности
- •8.1 Постулаты Эйнштейна
- •8.2 Преобразования Лоренца и следствия из них
- •8.3 Преобразование скоростей в релятивистской кинематике
- •8.4 Понятие о релятивистской динамике
- •9.1 Законы гидростатики
- •9.2 Течение жидкости, уравнение неразрывности
- •9.3 Уравнение Бернулли
- •9.4 Вязкость жидкости и методы ее измерения
- •Раздел 2 Молекулярная физика и термодинамика
- •10.1 Предмет и методы молекулярной физики
- •10.2 Основные положения мкт
- •1. Все вещества состоят из молекул, которые, в свою очередь, состоят из еще более мелких частиц – атомов.
- •2. Между молекулами одновременно действуют силы взаимного притяжения и взаимного отталкивания.
- •3. Молекулы, составляющие тело, находятся в состоянии непрерывного беспорядочного (хаотического) движения.
- •10.3 Размеры и масса молекул, количество вещества
- •10.4 Модель идеального газа
- •11.1 Основное уравнение молекулярно-кинетической теории
- •11.2 Молекулярно-кинетический смысл температуры
- •11.3 Распределение молекул по скоростям и энергиям
- •11.4 Средняя длина свободного пробега молекул
- •12.1 Уравнение состояния реальных газов
- •12.2 Внутренняя энергия реального газа
- •12.3 Свойства жидкостей и твердых тел
- •12.4 Фазовые переходы первого и второго рода
- •13.1 Внутренняя энергия и работа газа, теплоемкость
- •13.2 Первое начало термодинамики
- •13.3 Тепловые машины, цикл Карно
- •13.4 Второе и третье начало термодинамики
- •14.1 Понятие о явлениях переноса
- •14.2 Диффузия в газах
- •14.3 Вязкость газов
- •14.4 Теплопроводность газов
14.1 Понятие о явлениях переноса
Взаимодействие молекул, в частности столкновение между молекулами газа, играет важную роль в процессе установления равновесного состояния.
Практически в земных условиях из-за наличия сил сопротивления (сил трения) все системы, в которых не происходит притока энергии извне, являются диссипативными. Если диссипативную систему вывести из состояния равновесия, а затем предоставить самой себе, то она постепенно перейдёт в равновесное состояние. Время, в течение которого система достигает равновесного состояния, называют временем релаксации. Время релаксации различно относительно разных параметров, по которым система может отклоняться от равновесного состояния.
Взаимодействия молекул, их столкновения, являются тем механизмом, который приводит систему (газ) в равновесное состояние. В идеальном газе столкновения происходят в основном между парами молекул, одновременным столкновением трёх и более молекул можно пренебречь.
Вывести систему, представляющую собой идеальный газ, из равновесного состояния можно, например, нагрев одну часть газа, то есть нарушить тепловое равновесие. Если газ после этого предоставить самому себе, то через некоторое время температура снова станет одинаковой во всех частях газа. Это выравнивание происходит благодаря непрерывному тепловому движению молекул. В нагретой части больше быстрых молекул, имеющих большую тепловую энергию, чем в других частях газа, поэтому быстрые молекулы переходят туда, где их меньше, таким образом, их число становится равным повсюду.
Одновременно происходит перемещение молекул и в нагретую область, благодаря соударениям, так что число частиц в единице объёма в среднем не изменяется. Происходит только перенос энергии из той части газа, где она больше, туда, где она меньше. Этот процесс называется теплопроводностью.
Если систему вывести из равновесия, добавив примесь другого газа, так, чтобы при одинаковых во всём объёме давлении и температуре, концентрация примеси в одной части была выше, чем во всех других, то спустя определённое время система перейдёт в равновесное состояние за счёт перемещения молекул примеси из области с большей концентрацией в область с меньшей концентрацией. В данном процессе, который называется диффузией, происходит перенос массы примеси. Время релаксации системы в этом случае не равно времени релаксации системы, стремящейся к тепловому равновесию.
Равновесие газа может быть нарушено, если одной из его частей сообщена скорость, отличная от скорости течения соседних частей. В этом случае через некоторое время, благодаря переносу импульса упорядоченного движения от более быстрых слоёв к менее быстрым, скорости слоёв выравниваются. Этот процесс называется вязкостью.
Все эти процессы можно рассматривать как явления переноса, подходя к их изучению с формальной стороны одинаково: выделяя переносимую величину, выделяя причину переноса, вводя уравнение переноса и времена релаксации.
Как уже было отмечено выше, механизм, который приводит систему (газ) в равновесное состояние, обусловлен столкновениями молекул. Основные характеристики молекулярного движения были рассмотрены нами в п. 11.4.
