Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
концепция сессия жауабы.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
203.93 Кб
Скачать

Механика зандары, Ньютонның бірінші заңы

“Егер денеге сырттан күш әсер етпесе, онда ол тыныштық күйін немесе бірқалыпты түзу сызықты қозғалыстағы күйін сақтайды”. Біздің дәуірімізге дейінгі 4-ғасырдан бастап, жиырма ғасырға созылған уақыт бойы гректің ұлы ойшылыАристотельдің және оның жолын қуушылардың идеясы үстемдік етті. Олардың көзқарасы бойынша дене тұрақты жылдамдықпен қозғалу үшін, оған үнемі басқа дене әрекет ету керек деп есептелінді: дененің табиғи күйі тыныштық деп саналды. Алғаш рет итальян ғалымы Галилео Галилей (1564-1642) ғасырлар бойы қалыптасқан бұл қағидадан бас тартты. Ол өзінің жүргізген тәжірбиелері негізінде Аристотель мен оның жолын қуушылар ілімінің жалған екендігін дәлелдей білді. Егер денеге басқа денелер әрекет етпесе немесе олардың әрекеті теңгерілген болса, онда дене не тыныштықтағы күйін сақтайды, немесе түзу сызықты және бір қалыпты қозғалысын жалғастырады деген қорытындыға келген болатын. Бұл өздеріне таныс инерция заңы. И.Ньютон инерция заңын механика негізіне енгізді, сондықтан бұл заңды Ньютонның бірінші заңы деп атайды.

Ньютонның екінші заңы

“Дененің қозғалыс мөлшерінің өзгеруі түсірілген күшке пропорционал және ол күшпен бағыттас болады”. Қарапайым бақылаулар, егер әр түрлі денелерге бірдей күшпен әрекет жасаса, олардың түрліше үдеу алатының көрсетеді. Ньютонның екінші заңы төмендегіше тұжырымдалады: Денеде туындайтын үдеу оған әрекет етуші күшке тура пропорционал, ал оның массасына кері пропорциянал: a=F/m Ньютонның екінші заңының формуласы

F=ma

Ньютонның үшінші заңы

“Әрбір әсерге оған тең, бірақ кері бағытталған қарсы әсер болады, басқаша айтқанда, екі дене бір-біріне шама жағынан тең, бағыты жағынан қарама-қарсы күштермен әсер етеді”.

Ньютонның механика заңдары Г.Галилей, Х.Гюйгенс, И.Ньютон және басқа ғалымдардың бақылаулары мен зерттеулерінің нәтижелерін қорытындалу арқылы тұжырымдалды. Қазіргі көзқарас және терминология бойынша бірінші және екінші заңдардағы денені материалдық нүкте деп, қозғалысты инерциалдық санақ жүйесіне қатысты қозғалыс деп түсіну керек. Классик. механикада екінші заңның математикалық түрі: немесе mα=F, мұндағы m – нүктенің массасы, ν – оның жылдамдығы, α – үдеу, t – уақыт, F – әсер етуші күш. Ньютонның механика заңдары микроәлем нысандары (атом, молекула, элементар бөлшектер) үшін және жарық жылдамдығына жуық жылдамдықпен қозғалған денелерге қолдануға келмейді.

Инерция заңы орындалмайтын санақ жүйелері болады екен. Мұндай санақ жүйелерінде дененің қозғалыс жылдамдығы өзара әрекеттесуден ғана емес, сол жүйенің үдемелі қозғалысынан да туындай алады. Ондай санақ жүйелері инерциялық емес санақ жүйелері деп аталады. Ньютонның үшінші заңы Әрекет етуші күшке әрқашан тең қарсы әрекет етуші күш бар болады. Басқаша айтқанда, денелердің бір – біріне әрекет етушә күштері модулі бойынша өзара тең және бағыттары қарама қарсы: F=-F

45 сұрақ осыда

42)Электр туралы; Электр тогы – электр қозғаушы күштің әсерінен зарядтардың (зарядталған бөлшектер немесе дене) бағытталған қозғалысы.

Зарядталған бөлшектер: өткізгіштерде — электрондарэлектролиттерде —иондар (катиондар мен аниондар), газда —иондар мен электрондар, арнайы жағдайдағы вакуумда — электрондар, жартылай өткізгіштерде —электрондар мен кемтіктер (электронды-кемтіктік өтімділік) болып табылады.

Электр тогы энергетика саласында — энергияны алыс қашықтыққа жеткізу үшін, ал телекоммуникация саласында — ақпаратты шалғайға тасымалдау үшін қолданылады.

Сипаттамалар[өңдеу]

Электр тогының бағыты шартты түрде өткізгіштердегі оң заряд тасушылардың орын ауыстыру бағыты алынады, бірақ өткізгіштердегі заряд тасушылардың заряды теріс (мысалы, металда электрон) болғандықтан ток бағыты электрондардың бағытына қарсы келеді.

Токтың тұрақты ток (ағылш. direct currentDC) және айнымалы ток (ағылш. alternating currentAC) деп аталатын екі түрі бар.

  • Тұрақты ток — уақыт бойынша бағыты және шамасы аз өзгереді.

  • Айнымалы ток — бағыты мен шамасы периодты түрде өзгеріп отыратын электр тогы. Ал техникада айнымалы ток деп ток күші мен кернеудің период ішіндегі орташа мәні нөлге тең болатын периодты ток түсіндіріледі. Айнымалы ток байланыс құрылғыларында (радио, теледидар, телефон т.б.) кеңінен қолданылады.

Ток күші (және кернеу) өзгерісі (тербеліс) қайталанатын уақыттың (секундтпен берілген) ең қысқа аралығы период (Т) деп аталады (3-сурет). Айнымалы токтың тағы бір маңызды сипаттамасы — жиілік (ƒ). Уақыт бірлігінде жасалған периодтар саны жиілік деп аталады. Айнымалы ток жоғарғы жиілікте өткізгіш сыртына ығыстырылады, бұл скин-эффект құбылысы деп аталады.

Э. т. физ. табиғатына қарай өткізгіштік Э. т. (электр өрісінің әсерінен өткізгіште не шала өткізгіште пайда болатын ток тасушылардың реттелген қозғалысы), конвекциялық Э. т. (электрлік өткізгіштігі болмайтын ортадағы не вакуумдағы зарядталған бөлшектер мен денелердің қозғалысы), поляризациялық Э. т. (диэлектриктегі поляризациялық өзгеруі нәтижесінде ондағы байланысқан зарядталған бөлшектердің қозғалысы) болып бөлінеді. Э. т-ның өлшеуішіне ток күші және ток тығыздығы алынады. Э. т. магнит өрісінің көзі болып есептеледі. Магнит өрісін қарастырған жағдайда Э. т.: макроскопиялық ток (өткізгіштік және конвекц. Э. т.), молекулалық ток (ортаны құрайтын атоммолекула және иондардағы электрондардың қозғалысына сәйкес келетін микротоктар; ығысу тогы) болып ажыратылады.

Элементар Электр Заряды 10–19 кулон. Кез келген бөлшектің электр заряды не нөлге (мыс., нейтрон заряды), не Э. э. з-на тең (мыс., протон не электрон заряды), не Э. э. з-на еселі (мыс., атом ядросы мен иондар заряды) болады.0,0000070)(е) – барлық оң және теріс электр зарядтарының ішінде абс. мәні жағынан ең кіші болатын электр заряды е=(1,6021917

Электр заряды – бөлшектер мен денелердің сыртқы электрмагниттік өріспен өзара әсерін, сондай-ақ олардың электрмагниттік өрістерінің өзара байланысын анықтайтын негізгі сипаттамалардың бірі.

Электр заряды 2 түрге ажыратылады және ол шартты түрде оң заряд және теріс заряд деп аталады. Аттас зарядтар бірін-бірі тебеді, ал әр аттас зарядтар бірін-бірі тартады. Дененің электр заряды оның құрамына енетін барлық бөлшектің Электр зарядының алгебр. қосындысына тең. Электр заряды дискретті, яғни барлық бөлшектер мен денелердің электр заряды еселі болып келетін ең кіші элементар электр заряды болады. Оқшауланған электр жүйесінде зарядтың сақталу заңы орындалады. Қозғалмайтын электр зарядының арасындағы өзара әсер Кулон заңымен, ал электр заряды және оның эл.-магн. өрісінің арасындағы байланыс Максвелл теңдеуімен сипатталады. Заттағы өрісті қарастырған кезде электр заряды еркін заряд және байланысқан заряд болып ажыратылады. Электр зарядының бірліктердің халықаралық жүйесіндегі (СИ) өлшеу бірлігі – кулон (к).

Электр (көне грекше: ἤλεκτρον - электрон ) – барлық электрмагниттік құбылыстың, яғни электр зарядының болуына және олардың қозғалысы мен өзара әсеріне негізделген құбылыстардың жиынтығы, “Э.” терминінің мазмұны физика мен техниканың даму процесінде өзгеріп, толығып отырады.

Қарапайым электрлік және магниттік құбылыстар ерте заманда-ақ белгілі болғанымен “Э.” туралы ілім 17 ғ-ға дейін дами алған жоқ. 18 ғ-да ол ілім жүйеге түспеген фактілер мен бір-біріне қайшы жорамалдар жиынтығынан тұрады. “Э.” жөніндегі алғашқы деректер кейбір денелер (мыс., янтарь) үйкеліс нәтижесінде “электрленеді”, яғни ондай денелер жеңіл денелерді өзіне тартады деген тұжырым түрінде болды (ғылымға “Э.” терминін 1600 ж. У.Гильбертенгізген). 18 ғ-дың басында денелердің электрленуі сол денені қоршаған “электрлік атмосфера” әсерінен болады деп қарастырылды. Алайда 18 ғ-дың ортасынан бастап денелердің ішінде электрлік “флюидтар” (сұйықтар) болады деген болжамдар қалыптаса бастады. 18 ғ-дың аяғында Г.Кавендиш (1773) және Ш.Кулон (1785) ұқыпты жүргізілген өлшеулерге сүйене отырып электрстатиканың негізгі заңын (қ. Кулон заңы) тұжырымдап берді. Электр зарядының арасындағы тартылыс не тебіліс күші кулондық немесе электрстатик. күш деп аталады.

Э. жөніндегі ілім тарихындағы жаңа кезең – Л.Гальвани (1791) мен А. Вольтаның (1794) хим. және контактілік электр көздерін ашуы болды. Осыдан кейін Э. тогын зерттеу күшті қарқынмен жүргізіле бастады: әуелі токтың физиол. әсері, кейін оның хим. және жылулық әсерлері зерттелді. 1802 ж. В.Петров электр доғасын (1808 – 09 ж. мұны Г.Дэви де байқаған) ашты және оны жарықтандыру ісі мен балқыту пештерінде пайдалануға болатынын дәлелдеді. Дж. Джоуль(1841) және Э.Х. Ленц (1842) бір-біріне тәуелсіз түрде өткізгішпен ток жүргенде бөлініп шығатын жылудың мөлшері жөніндегі заңды тұжырымдарды; қ.Джоуль-Ленц заңы. 1820 ж. Х.Эрстед электр тогы мен тұрақты магнит арасында байланыс болатындығын, ал А.Ампер тогы бар екі өткізгіштің өзара әсерлесетіндігін ашты. Тогы бар өткізгіштердің арасындағы әсерлесу күші кулондық күштен өзгеше әрі ол электр зарядының қозғалысына тәуелді болады. Сондықтан мұндай күштер электрдинамикалық күштер деп аталады. Эрстед пен Ампердің магнетизм жөніндегі ашқан жаңалықтары “Э.” ілімінің құрамына енеді.

19 ғ-дың 2-ширегінде Э. техникаға кеңінен ене бастады. 19 ғ-дың 20 жылдары алғашқы электрмагнит, 30 жылдары телеграфтаудың жетілген сұлбалары, гальванопластика, алғашқы электр сұлбалары мен генераторы, 40 жылдары алғашқы электрлік жарықтандыру приборлары, т.б. пайда болды. Э-дың күнделікті тіршілікте қолданылуы одан әрі кеңейді. Физиканың жетістіктеріне байланысты электртехниканың күрт дамуы да Э. ілімінің дамуына елеулі әсер етті.

19 ғ-дың 30 және 40-жылдары М.Фарадей эл.-магн. құбылыстардың жаңа концепциясын ұсынды. Бұл уақытқа дейін Э. өзінің өндірілуі (пайда болу) тәсіліне сәйкес: қарапайым Э. (мыс., үйкеліс Э-і), атмосф. Э., гальваник. Э. (мыс., гальваник. батареядан алынатын ток), магниттік Э. (мыс., Фарадей ашқаниндукция тогы), т.б. болып ажыратылатын. Фарадей өзінің тәжірибесіне сүйене отырып Э-дің барлық түрінің бірдей екендігін дәлелдеді. Олардың әр түрлі болуы, біріншіден – Э. мөлшерінің, екіншіден – кернеудің (потенциалдың) әр түрлі болуына байланысты. Фарадей ашқан электрмагниттік индукция құбылысының зор маңызы болды. Бұл құбылыс электртехниканың іргетасы болып есептеледі. Ал Ленц индукциялық токтың бағытын анықтайтын ережені ұсынды (қ. Ленц ережесі). 1833 – 34 ж. Фарадей электролиз заңдарын ашты. Сөйтіп электрхимияның негізі қалана бастады. Электролиз заңдары электр зарядының дискреттілігі жөніндегі жорамал жасауға мүмкіндік берді.

19 ғ-дың 2-жартысынан бастап Фарадей идеялары Дж. Максвеллдің және Г.Герцтің еңбектерінде одан әрі дамытылып, қорытындыланды. Максвелл өзінің еңбектерінде (1861 – 73) Фарадейдің позициясын толық жақтады. Ол Фарадейдің көзқарасын матем. жолмен талдап, баға берді. Мұның үстіне Максвелл электр және магнит өрістерінің бір-біріне ауыса алатындығын тұжырымдады: уақыт бойынша магнит өрісінің өзгеруі Э. өрісін, ал уақыт бойынша Э. өрісінің өзгеруі магнит өрісін туғызады. Бұл жағдайда Э. өрісінің өзгеру жылдамдығына пропорционал шама Э. тогына ұқсас болады. Максвелл оны ығысу тогы деп атады. Э. зарядын осылайша жалпылау Максвеллге жаңа салдарлар мен болжамдар жасауға мүмкіндік берді, яғни: кез келген эл.-магн. өзара әсердің таралу жылдамдығы шекті; негізгі қасиеттері бойынша жарық толқындарымен бірдей (еркін) эл.-магн. толқындар болады. Мұндай қорытынды “жарық–электрмагниттік толқын” деген батыл идеяның дұрыстығын дәлелдей түсті.

Максвеллдің теориясына сүйене отырып Герц эл.-магн. толқынның бар екендігін тәжірибе жүзінде дәлелдеді. Сөйтіп эл.-магн. өріс концепциясы Э. туралы ілімде берік дәлелденді. Герц тәжірибесінің нәтижесі эл.-магн. толқындарды байланыс мақсаты үшін пайдалануға итермеледі. Мұндай міндетті А.С. Поповорындады. Ол 1895 ж. радионы ойлап тапты. Максвеллдің өріс энергиясы кеңістіктің кішкентай көлемінде белгілі бір тығыздықпен таралған деген тұжырымның эл.-магн. өріс концепциясының дамуы үшін зор маңызы болды. Тұтас ортадағы энергияның сақталу заңының жалпы тұжырымдамасын 1874 ж. Н.А. Умов берді. Эл.-магн. толқынның, сондай-ақ жарық толқынының дене бетіне түсіретін қысымы ретінде байқалатын импульсы болады. Жарық қысымының болатынын тәжірибе жүзінде П.Н. Лебедев дәлелдеді (1899). Эл.-магн. өріске динам. ұғымдарды (масса, энергия, импульс) пайдалануға болатындығы, физиктерді, Фарадей мен Максвеллдің (өрісті ерекше ортаның, яғни эфирдің күйі ретінде қарастырған) көзқарастарын қайта қарауға мәжбүр етті. Мұндай қайта қарау салыстырмалық теориясы шыққаннан кейін мүмкін болды. Сөйтіп ғалымдар эл.-магн. өрісті эфирдің күйі ретінде қарастыратын көзқарастан біржолата бас тартты. 19 ғ-дың соңында Э. туралы ілімнің дамуында жаңа кезең басталды. Оның мазмұны Г.Лоренц негізін қалаған классик. электрондық теорияның шығуына байланысты еді. Алайда бұл теорияның да шеше алмаған көптеген мәселелері болды. Бұл қиыншылықтар 20 ғ-дың басында пайда болған маңызды физ. теорияларда шешіле бастады.

Электростатикалық әсерлесу күшін Кулон күші деп атайды. Кулон күші табиғаты жағынан центрлік күштерге жатады, яғни екі нүктелік зарядтың центрлерін қосатын түзудің бойымен бағытталады.

Вакуумдағы қозғалмайтын екі нүктелік электр зарядының өзара әсерлесу күшінің олардың ара қашықтығына тәуелділігі Кулон заңы арқылы тағайындалған. Кулон заңы электростатиканың негізгі заңы болып табылады.

Бір-бірінен l қашықтықта орналасқан екі нүктелік зарядтардың өзара әсерлесу күші сол зарядтардың көбейтіндісіне тура және олардың арақашықтығының квадратына кері пропорционал: F=k½q1q2½/r2 (9.1)

Fкүші өзара әсерлесетін зарядтарды қосатын түзу бойымен бағыттала-ды, мұндағы k-пропорционалдық коэффициент k=1/4pe0,, мұндағы

e0,-электр тұрақтысы, e0=8,85×10-12 Кл2/(Н×м2).

Әр текті ортада зарядтардың әсерлесу күші әртүрлі болады. Ол ортаның диэлектрик өтімділігіне (e) байланысты. Ауа үшін e=1. Басқа орталар үшін e мәнін оқулықтарда берілетін кестелерден алуға болады. Диэлектрлік өтімділік зарядтардың вакуумдағы әсерлесу күшінің басқа ортадағы әсерлесу күшінен қанша есе кем екендігін білдіреді.

Электростатикалық өріс–потенциалдық өріс, себебі q0 зарядтың орын ауыстырғанда істеген жұмысы оның жолына ғана емес, осы зарядтың бастапқы және соңғы орнына да байланысты. Ал электростатикалық күштер консерватив күштер болып табылады. Сыртқы электростатикалық өрісте кез келген тұйықталған жол бойынша электр зарядын тасымал-дағанда жасалатын жұмыс нольге тең болады:   (9.9)

Тұйық L контуры бойынша алынған интеграл Е векторының циркуляциясы деп аталады. Сөйтіп, электростатикалық өріске тән нәрсе-кез келген тұйық контур бойынша кернеулік векторының циркуляциясы нольге тең болады.

43)Жарықтың кванттық қасиеттеріКванттық механикатолқындық механика – микробөлшектердің (элементар бөлшектердің, атомдардыңмолекулалардың, атом ядроларының) және олардың жүйелерінің (мысалы, кристаллдардың) қозғалу заңдылықтарын анықтайтын, сондай-ақ, бөлшектер мен жүйелерді сипаттайтын физикалық шамаларды макроскопиялық тәжірибеде тікелей өлшенетін шамалармен байланыстыратын теория.

Ол өрістің кванттық теориясында, кванттық химиядакванттық статистикада, т.б. қолданылады. Кванттық механика бейрелятивистік (жарық жылдамдығымен салыстырғанда төмен жылдамдықтағы с) және релятивистік (жарық жылдамдығымен салыстыруға болатын жоғары жылдамдықтағы с) болып бөлінеді.

Бейрелятивистік кванттық механика (өзінің қолданылу аймағындағы Ньютон механикасы сияқты) – толық аяқталған, қайшылықтары жоқ, өз саласында кез келген есептерді шешуге мүмкіндігі бар теория. Керісінше, релятивистік кванттық механиканы мұндай теория қатарына жатқызуға болмайды. Классикалық механика кванттық механиканың жуықталған дербес түрі болып саналады.

1887 неміс физигі Генрих Герц электр ұшқындары пайда болатын вибратор саңылауына ультра күлгін сәулелерін түсіргенде электр ұшқындары көбейіп, электр разрядының, күшейетіндігін байқаған. Одан кейін ғалымдар мырыш пластинкасына ультра күлгін сәуле түсіргенде одан теріс зарядтар ұшып шығып, мырыштың оң зарядталатындығын анықтаған.  Осы тәжірибелер металл пластинкаға жарық түскенде, одан электрондар ұшып шығатындығын көрсетеді. Осындай жарықтың әсерінен металл пластинкадан электрондардың ұшып шығу құбылысын фотоэффект құбылысы деп атаған.  Бұл фотоэффект құбылысын тереңірек зерттеген орыс физигі Столетов болды. Столетов бұл құбылысты мынандай тәжірибе арқылы зерттеген.

Фотоэффект заңдарының теориялық түсiнiгiн 1905 жылы А.Эйнштейн бердi. Ол өз зерттеулерiнде М.Планктың кванттар жөнiндегi ұғымын одан әрi дамыта отырып, жарық тек кванттар түрiнде шығарылып ғана қоймайды, сонымен қатар кванттар түрiнде жұтылады да деп есептедi. Бұл жарық кванттарын ол фотондар деп атады. Эйнштейннiң бұл идеялары осы кезге дейiн үстемдiк етiп келген жарықтың толқындық теориясынан өзгеше, соны көзқарас едi. Бұл жерде жарықтың таралуы үздiксiз толқындық үрдiс ретiнде емес, ерекше жарық бөлшектерi – фотондардың с - ға тең жылдамдықпен қозғалатын ағыны ретiнде қарастырылады. Бұл тұрғыдан қарағанда, мәселен монохроматты жарыққа энергияларының мәндерi бiрдей, әрi hν-ге тең болатын фотондар сәйкес қойылады. Ал жарықтың затқа жұтылуы сәйкес фотондар осы затқа түскен кезде өз энергиясын түгелiмен заттың атомдары мен молекулаларына беруiмен түсiндiрiледi. Жарықтың табиғатына деген осы кванттық көзқарас фотоэффект құбылысының тәжiрибеден байқалатын барлық заңдылықтарын түсiндiруге мүмкiндiк бердi.  Шындығында, мәселен, электрон металлдан ұшып шығуы үшiн металл-вакуум шекарасындағы потенциалдық тосқауылдан өтуi, яғни қандай да бiр Aшығ-ға тең шығу жұмысын iстеуi қажет. Бұған қажет энергияны электрон өзi жұтқан фотоннан алады. Фотон металл атомына жұтылған кезде өзiнiң εν=hν -ға тең энергиясын толығымен электронға бередi. Онда мұндай фотоэлектрондар үшiн энергияның сақталу заңын мына түрде жазуға болады  Мұндағы mv2/2 – металлдардан ұшып шыққан фотоэлектронның кинетикалық энергиясы, ал Aшығ жоғарыдағы шығу жұмысы. Бұл өрнек сыртқы фотоэффект үшiн жазылған  Эйнштейн теңдеуi деп аталады. Бұл теңдеуден егер hν>Ашығ болса, онда электрон өз энергиясының бiразын шығу жұмысына жұмсап, металлдан ұшып шыға алатыны көрiнiп тұр. Ал егер электронның энергиясы шығу жұмысынан аз болса, онда ол металлдан тысқары шыға алмайды. Фотоэффект мүмкiн бола бастайтын ең аз жиiлiктi νmin деп белгiлей отырып, оны фотоэффекттiң қызыл шекарасы деп атайды. Фотоэффекттiң қызыл шекарасының мәнi электрон ұшып шығатын беттiң күйiмен және металлдың химиялық құрамымен анықталады.  Эйнштейн теңдеуi сыртқы фотоэффекттiң тәжiрибеден байқалатын барлық заңдарын теориялық тұрғыдан түсiндiруге мүмкiндiк бередi. Шындығында, екiншi заңмен анықталған фотоэффекттiң қызыл шекарасының түсiнiгiн жоғарыда бердiк, ал ендi (6.3) өрнегiнен электрондардың максимальдi кинетикалық энергиясы, яғни максимальдi жылдамдығының жиiлiктен тәуелдi екенi көрiнiп тұр. Бұл фотоэффекттiң бiрiншi заңы.  Ақырында, уақыт бiрлiгiнде ұшып шығатын электрондардың саны бетке түсiп жатқан фотондардың санына пропорционал болуы керек. Ал фотондардың саны жарықтың қарқындылығын анықтайды. Сонымен, фотоэффекттiң үшiншi заңы да өз түсiнiгiн алды. 

Комптон эффектісі - шашыраған сәуле шығарудың толқын ұзындығы түскен сәуленің толқын ұзындығынан көп болған кездегі еркін немесе әлсіз байланысқан электрондағы жоғары жиілікті электромагниттік сәулеленудің серпімді шашырауы.

44)Рентген, ультракүлгін, инфрақызыл сәулелер: Ультракүлгін сәуле шығару — жарық сәулелері спектрінің күлгін бөлігіне іргелес, күлгін және радиосәулелер аралығында орналасқан, толқын ұзындығы 400—10 нанометр (нм) аралығына сәйкес келетін электрмагниттік сәулелер. Толқын ұзындығы қысқарған сайын мөлдір денелердің оларды сіңіруі күшейе түседі, ал ұзындығы 100 нм-ден кем сәулелер толық ұсталып қалады. Көптеген ғарыш денелері, әсіресе Күн ультракүлгін сәуле шығарады. Жерге түсетін ультракүлгін сәулелер А (толқын ұзындығы 400—320 нм), В (320-290 нм) және С (290-40 нм) болып бөлінеді. "А" ультракүлгін сәулесі Жер бетіне көрінетін сәулелермен (жарық сәулелерімен) қатар келіп жетеді, айтарлықтай фотохимиялық әсері бар, мысалы, теріпі "тотықтырады" (секпіл басып кетеді). "В" ультракүлгін сәулесінің едәуір бөлігі Жер атмосферасыныңозон қабатында тұтылып қалады, тірі протоплазманы жою қасиеті бар. Ол көп мөлшерде әсер еткен жағдайда теріні күйдіреді, қабыршақтандырады, тері обырының кейбір түрлерінің (базальдық клеткалар ісігі, терінің тікенек тәріздес клеткаларының обыры, меланома) себепші болады. Жер бетіне келіп жететін "С" ультракүлгін сәулесі толығымен дерлік атмосфера қабатында тұтылып қалатындықтан, Жер бетіне жетпейді. Ультракүлгін сәулелер организмнің иммунитетін төмендетеді, әр түрлі көз ауруларына себепші болады.[1]