- •Рилизинг-факторы гипоталамуса: химическая природа и функции.
- •Гормоны гипофиза: химическая природа и функции.
- •Тиреоидные гормоны: химическая природа и функции
- •Гормоны поджелудочной железы: химическая природа и функции
- •Гормоны гипоталамуса: химическая природа и функции.
- •Катехоламины: их строение и функции.
- •Гормоны – производные аминокислот: строение, функции.
- •Стероидные гормоны: разнообразие и функции.
- •Механизм действия стероидных гормонов.
- •Мембрано-опосредованный механизм действия пептидных и белковых гормонов
- •Роль пиридинзависимых дегидрогеназ в процессах дыхания. Функ. Особ. Над и надф.
- •Роль флавинзависимых оксидоредуктаз в процессе дыхания и детоксикации ксенобиотиком. Функциональные особенности фад и фмн (напишите формулы кофакторов).
- •Роль Коэнзима а в метаболизме углеводов и липидов. Структурные особенности КоА
- •Роль производных витамина в6 в метаболизме аминокислот. Напишите в общем виде уравнение реакции переаминирования.
- •Уровни регуляции метаболических процессов.
- •Органический протеолиз. Активация пищеварительных протеолитических ферментов.
- •Регуляция скорости метаболизма путем взаимопревращения ключевых ферментов.
- •Регуляция скорости метаболизма путем изменения активности ключевых ферментов
- •Регуляция скорости метаболизма на генетическом уровне.
- •Аллостерическая регуляция активности ключевых ферментов метаболических путей Ретроингибирование ключевых ферментов и активация их предшественниками.
- •Биосинтез рнк. Этапы транскрипции. Биологическая роль транскрипции.
- •Репликация днк. Ферменты репликации. Биологическая роль репликации.
- •Назовите б-кетокислоты, образующиеся из аминокислот (аспартата, аланина) в реакциях трансаминирования с б-кетоглутаратом. Опишите механизм трансаминирования.
- •Назовите пути образования и распада аминокислот. Декарбоксилирование аминокислот. Физиологическая роль продуктов этого процесса.
- •Гидролитическое расщепление олиго- и полисахаридов в процессе пищеварения. Фосфоролиз гликогена.
- •Этапы переваривания липидов в жкт. Напишите реакции, ход которых катализируется панкреатической липазой. Какие еще ферменты принимают участие в гидролизе липидов в кишечнике.
- •Ферментативное расщепление нуклеиновых кислот. Разнообразие и специфичность действия нуклеаз. Рестриктазы.
- •Строение и функции рибосом про- и эукариот.
- •Гормональная регуляция активности ключевых ферментов с участием вторичных посредников. Роль внутриклеточных посредников в проведении и усилении гормонального сигнала.
- •Дихотомический пути расщепления глюкозы в аэробных условиях (опишите химизм процесса). Ключевые метаболиты, регуляция процесса.
- •Гликогенолиз. Регуляция гликогенолиза. Энергетическая характеристика процесса.
- •Катаболизм углеводов в анаэробных условиях. Брожение. Сравните молочнокислое и спиртовое брожение (химизм всех этапов). В чем их различие?
- •Пентозофосфатный путь обмена углеводов, его биологическая роль. Окислительная и неокислительная стадии пентозофосфатного пути.
- •Глюконеогенез, его биологическая роль. Обходные реакции глюконеогенеза (химизм).
- •Окислительное декарбоксилирование пировиноградной кислоты. Структурная организация и локализация мультиферментного пируватдегидрогеназного комплекса.
- •Амфиболический цикл трикарбоновых кислот. Локализация цикла, ключевые метаболиты и баланс энергии в цтк.
- •Химизм реакций цикла трикарбоновых кислот. Необратимые реакции цикла. Субстратное фосфорилирование в ходе цикла. Регуляция цикла.
- •Обмен пировиноградной кислоты в анаэробных и аэробных условиях. Опишите химизм этих процессов.
- •Энергетическая характеристика полного аэробного окисления глюкозы и окисления глюкозы в анаэробных условиях. Эффект Пастера.
- •Биологическое окисление. Окисление органических соединений, сопряженное с фосфорилированием. Субстратное фосфорилирование.
- •Свободное окисление. Ферменты, катализирующие реакции включения кислорода в молекулу субстрата. Монооксигеназная система цитохрома р450 и ее роль в детоксикации ксенобиотиков.
- •Активные формы кислорода. Пути их образования. Перекисное окисление липидов (пол). Антиоксиданты. Антиоксидантная система организма.
- •Структурная организация и локализация дыхательной цепи митохондрий. Энергетическое значение ступенчатого транспорта электронов от субстратов окисления кислороду.
- •Участки сопряжения в дыхательной цепи. Механизм сопряжения окисления и фосфорилирования в дыхательной цепи. Трансмембранный потенциал протонов как форма запасания энергии.
- •Опишите процесс окисления стеариновой кислоты до со2 и н2о. Подведите энергетический баланс этого процесса.
- •Взаимосвязь между β-окислением жирных кислот и циклом Кребса. Химизм и локализация процесса β-окислением жирных кислот.
- •Синтез жирных кислот. Химизм и локализация этого процесса. Мультиферментный комплекс синтазы жирных кислот.
- •Докажите на конкретном примере (напишите уравнения реакций), что последовательность реакций синтеза жирных кислот приводит к поэтапному удлинению ацилов на два углеродных атома.
- •Биосинтез триацилглицеринов и глицерофосфолипидов. Роль фосфатидной кислоты в этих процессах.
- •Основные пути катаболизма аминокислот. Механизм и биологическое значение переаминирования.
- •Пути образования аммиака. Механизм окислительного дезаминирования. Обезвреживание аммиака в организме. Синтез амидов дикарбоновых аминокислот. Их роль в обмене веществ.
- •Пути выведения аммиака из организма у животных. Орнитиновый цикл мочевинообразования. Локализация и химизм процесса. Биологическая роль синтеза мочевины.
- •Ферментативное расщепление нуклеотидов. Принципы катаболизма пуриновых и пиримидиновых оснований. Продукты катаболизма азотистых оснований.
- •Биосинтез пуриновых и пиримидиновых рибонуклеотидов. Роль фосфорибозильного компонента. Образование дезоксирибонуклеотидов.
- •Биосинтез белка. Аппарат трансляции. Локализация в клетке и этапы этого процесса. Энергетическая характеристика процесса биосинтеза белка.
- •Взаимосвязь процессов метаболизма углеводов, липидов и белков. Ключевые метаболиты. Амфиболические метаболические пути.
Стероидные гормоны: разнообразие и функции.
Стероидные гормоны. - соединения липидной природы, производные циклопентанопергидрофенантрена. Предшественник стероидных гормонов - холестерин.
Место синтеза: кора надпочечников, половые железы.
Кора надпочечников: Глюкокортикоиды (кортизол, кортикостерон) - Регулируют обмен углеводов, белков, жиров и нуклеиновых кислот и Минералокортикоиды (альдостерон) - Регулируют минеральный обмен.
Половые железы: в семенниках образуются мужские половые гормоны, или андрогены (тестостерон), а в яичниках - женские половые гормоны, которые разделяются на эстрогены (эстрадиол) и прогестины (прогестерон). Половые гормоны регулируют половое созревание.
Механизм действия стероидных гормонов.
механизм действия липофильных, проникающих в клетку гормонов. К липофильным сигнальным веществам принадлежат все стероидные гормоны, тиреоидные гормоны и гидрофобные нейромедиаторы и регуляторы (кальциферол, ретиноевая кислота). Место действия липофильных гормонов - ядра клеток-мишеней. В цитоплазме или в клеточном ядре гормон взаимодействует со специфическим рецептором. При связывании гормона с рецептором образуется димер, обладающий повышенным сродством к ДНК. Комплекс гормон-рецептор связывается с регуляторными участками генов – энхансерами (усилителями) транскрипции. Действие гормона в течении нескольких часов приводит к изменению содержания в клетке мРНК ключевых белков клетки (например, ключевых ферментов). Синтетические вещества, вызывающие тот же эффект, что и природные гормоны, называются агонистами гормонов. Соединения, которые связываются с рецептором, но не вызывают биологического эффекта, носят название антагонистов, т. е. антагонисты блокируют действие эндогенных гормонов.
Мембрано-опосредованный механизм действия пептидных и белковых гормонов
механизм действия водорастворимых (гидрофильных) гормонов, не проникающих в клетку (белки, пептиды, производные аминокислот (катехоламины)). Они действуют на клетки-мишени за счет связывания с рецептором на плазматической мембране клеток. Рецепторы — интегральные мембранные белки, связывающие сигнальные вещества на внешней стороне мембраны и генерирующие сигнал на внутренней стороне мембраны за счет изменения пространственной структуры рецептора. Внутриклеточный сигнал регулирует активность ферментов или влияет на транскрипцию определенных генов.
Типы рецепторов гидрофильных гормонов и нейромедиаторов:
1)Рецепторы – ферменты, катализирующие фосфорилирование белков (протеинкиназы): рецепторы инсулина, факторов роста. Гормоны – их активаторы.
2)Рецепторы - ионные каналы (рецепторы ацетилхолина). Гормоны и нейромедиаторы, связываясь с рецептором, активируют ионные каналы для ионов Na+, К+ или Cl-. 3)Рецепторы, сопряженные с ГТФ-связывающими G-белками (рецепторы катехоламинов, глюкагона). Рецепторы передают сигнал с помощью G-белков на связанные с ними ферменты или ионные каналы, активация которых происходит при участии вторичных посредников передечи гормональных сигналов (например, цАМФ).
