- •Рилизинг-факторы гипоталамуса: химическая природа и функции.
- •Гормоны гипофиза: химическая природа и функции.
- •Тиреоидные гормоны: химическая природа и функции
- •Гормоны поджелудочной железы: химическая природа и функции
- •Гормоны гипоталамуса: химическая природа и функции.
- •Катехоламины: их строение и функции.
- •Гормоны – производные аминокислот: строение, функции.
- •Стероидные гормоны: разнообразие и функции.
- •Механизм действия стероидных гормонов.
- •Мембрано-опосредованный механизм действия пептидных и белковых гормонов
- •Роль пиридинзависимых дегидрогеназ в процессах дыхания. Функ. Особ. Над и надф.
- •Роль флавинзависимых оксидоредуктаз в процессе дыхания и детоксикации ксенобиотиком. Функциональные особенности фад и фмн (напишите формулы кофакторов).
- •Роль Коэнзима а в метаболизме углеводов и липидов. Структурные особенности КоА
- •Роль производных витамина в6 в метаболизме аминокислот. Напишите в общем виде уравнение реакции переаминирования.
- •Уровни регуляции метаболических процессов.
- •Органический протеолиз. Активация пищеварительных протеолитических ферментов.
- •Регуляция скорости метаболизма путем взаимопревращения ключевых ферментов.
- •Регуляция скорости метаболизма путем изменения активности ключевых ферментов
- •Регуляция скорости метаболизма на генетическом уровне.
- •Аллостерическая регуляция активности ключевых ферментов метаболических путей Ретроингибирование ключевых ферментов и активация их предшественниками.
- •Биосинтез рнк. Этапы транскрипции. Биологическая роль транскрипции.
- •Репликация днк. Ферменты репликации. Биологическая роль репликации.
- •Назовите б-кетокислоты, образующиеся из аминокислот (аспартата, аланина) в реакциях трансаминирования с б-кетоглутаратом. Опишите механизм трансаминирования.
- •Назовите пути образования и распада аминокислот. Декарбоксилирование аминокислот. Физиологическая роль продуктов этого процесса.
- •Гидролитическое расщепление олиго- и полисахаридов в процессе пищеварения. Фосфоролиз гликогена.
- •Этапы переваривания липидов в жкт. Напишите реакции, ход которых катализируется панкреатической липазой. Какие еще ферменты принимают участие в гидролизе липидов в кишечнике.
- •Ферментативное расщепление нуклеиновых кислот. Разнообразие и специфичность действия нуклеаз. Рестриктазы.
- •Строение и функции рибосом про- и эукариот.
- •Гормональная регуляция активности ключевых ферментов с участием вторичных посредников. Роль внутриклеточных посредников в проведении и усилении гормонального сигнала.
- •Дихотомический пути расщепления глюкозы в аэробных условиях (опишите химизм процесса). Ключевые метаболиты, регуляция процесса.
- •Гликогенолиз. Регуляция гликогенолиза. Энергетическая характеристика процесса.
- •Катаболизм углеводов в анаэробных условиях. Брожение. Сравните молочнокислое и спиртовое брожение (химизм всех этапов). В чем их различие?
- •Пентозофосфатный путь обмена углеводов, его биологическая роль. Окислительная и неокислительная стадии пентозофосфатного пути.
- •Глюконеогенез, его биологическая роль. Обходные реакции глюконеогенеза (химизм).
- •Окислительное декарбоксилирование пировиноградной кислоты. Структурная организация и локализация мультиферментного пируватдегидрогеназного комплекса.
- •Амфиболический цикл трикарбоновых кислот. Локализация цикла, ключевые метаболиты и баланс энергии в цтк.
- •Химизм реакций цикла трикарбоновых кислот. Необратимые реакции цикла. Субстратное фосфорилирование в ходе цикла. Регуляция цикла.
- •Обмен пировиноградной кислоты в анаэробных и аэробных условиях. Опишите химизм этих процессов.
- •Энергетическая характеристика полного аэробного окисления глюкозы и окисления глюкозы в анаэробных условиях. Эффект Пастера.
- •Биологическое окисление. Окисление органических соединений, сопряженное с фосфорилированием. Субстратное фосфорилирование.
- •Свободное окисление. Ферменты, катализирующие реакции включения кислорода в молекулу субстрата. Монооксигеназная система цитохрома р450 и ее роль в детоксикации ксенобиотиков.
- •Активные формы кислорода. Пути их образования. Перекисное окисление липидов (пол). Антиоксиданты. Антиоксидантная система организма.
- •Структурная организация и локализация дыхательной цепи митохондрий. Энергетическое значение ступенчатого транспорта электронов от субстратов окисления кислороду.
- •Участки сопряжения в дыхательной цепи. Механизм сопряжения окисления и фосфорилирования в дыхательной цепи. Трансмембранный потенциал протонов как форма запасания энергии.
- •Опишите процесс окисления стеариновой кислоты до со2 и н2о. Подведите энергетический баланс этого процесса.
- •Взаимосвязь между β-окислением жирных кислот и циклом Кребса. Химизм и локализация процесса β-окислением жирных кислот.
- •Синтез жирных кислот. Химизм и локализация этого процесса. Мультиферментный комплекс синтазы жирных кислот.
- •Докажите на конкретном примере (напишите уравнения реакций), что последовательность реакций синтеза жирных кислот приводит к поэтапному удлинению ацилов на два углеродных атома.
- •Биосинтез триацилглицеринов и глицерофосфолипидов. Роль фосфатидной кислоты в этих процессах.
- •Основные пути катаболизма аминокислот. Механизм и биологическое значение переаминирования.
- •Пути образования аммиака. Механизм окислительного дезаминирования. Обезвреживание аммиака в организме. Синтез амидов дикарбоновых аминокислот. Их роль в обмене веществ.
- •Пути выведения аммиака из организма у животных. Орнитиновый цикл мочевинообразования. Локализация и химизм процесса. Биологическая роль синтеза мочевины.
- •Ферментативное расщепление нуклеотидов. Принципы катаболизма пуриновых и пиримидиновых оснований. Продукты катаболизма азотистых оснований.
- •Биосинтез пуриновых и пиримидиновых рибонуклеотидов. Роль фосфорибозильного компонента. Образование дезоксирибонуклеотидов.
- •Биосинтез белка. Аппарат трансляции. Локализация в клетке и этапы этого процесса. Энергетическая характеристика процесса биосинтеза белка.
- •Взаимосвязь процессов метаболизма углеводов, липидов и белков. Ключевые метаболиты. Амфиболические метаболические пути.
Структурная организация и локализация дыхательной цепи митохондрий. Энергетическое значение ступенчатого транспорта электронов от субстратов окисления кислороду.
Дыхательной цепь-совокупность последовательных ОВР, в ходе которых при участии промежуточных переносчиков электронов происходит их перенос от исходного донора к терминальному акцептору электронов кислороду. В клетках эукариот дыхательная цепь локализована во внутренней мембране митохондрий. Направление потока электронов при сопряжении одной ОВ системы с другой определяется их стандартными окислительно-восстановительными потенциалами или редокс-потенциалами Е˚. Система образована ОВ ферментами и кофакторами: *Пиридинзависимые дегидрогеназы коЕ: НАД+. Локализованы в матриксе митохондрий, первичные акцепторы электронов (восстановливаются, принимая электроны от органических субстратов); *Флаванзависимые дегидрогеназы коЕ: ФАД, ФМН. ФАД-зависимая дегидрогеназа – первичные акцепторы; ФМ- зависимая дегидрогеназа – акцептор электронов от НАДН; *Убихинон (koQ) – промежуточный лабильный (подвижный) переносчик электронов; *FeS-белки. Промежуточные переносчики электронов содержат негемовое железо, связанное с серой остатков цистина и S2-, *Цитохромы с, с1, в, а, а. Компоненты электрон-транспортной цепи локализованы в 4 комплекса. Многоступенчатый характер окислительных процессов в живой клетке обеспечивает постепенное освобождение энергии, которая может быть использована в реакциях, связанных с выполнением различных видов биологической работы. Постепенное освобождение энергии уменьшает ее рассеивание и предохраняет клетку от разрушительного влияния тепловой энергии. Выработка тепла – это второстепенная функция процесса биологического окисления, основная функция биологического окисления- обеспечение энергией процессов роста, анаболизма, транспорта веществ через мембраны, создания электрических потенциалов, механической работы.
Участки сопряжения в дыхательной цепи. Механизм сопряжения окисления и фосфорилирования в дыхательной цепи. Трансмембранный потенциал протонов как форма запасания энергии.
Перенос электронов по дыхательной цепи от NADH к кислороду сопровождается выкачиванием протонов из матрикса митохондрий через внутреннюю мембрану в межмембранное пространство. Протоны, перенесённые из матрикса в межмембранное пространство, не могут вернуться обратно в матрикс, т.к. внутренняя мембрана непроницаема для протонов. Для этого создаётся протонный градиент, при котором концентрация протонов в межмембранном пространстве больше, а рН меньше, чем в матриксе. Кроме того, каждый протон несёт положительный заряд, и вследствие этого появляется разность потенциалов по обе стороны мембраны: отрицательный заряд на внутренней стороне и положительный - на внешней. В совокупности электрический и концентрационный градиенты составляют электрохимический потенциал ΔμН+ - источник энергии для синтеза АТФ. Т.к. наиболее активный транспорт протонов в межмембранное пространство, необходимый для образования ΔμН+ происходит на участках ЦПЭ, соответствующих расположению комплексов I, III и IV, - участки называются пунктами сопряжения дыхания и фосфорилирования. Важную роль в транспорте протонов через митохондриальную мембрану в пунктах сопряжения играет KoQ, который переносит электроны от комплекса I к комплексу III и протоны из матрикса в межмембранное пространство, совершая своеобразные циклические превращения, называемые Q-циклами. Донором электронов для комплекса III служит восстановленный убихинон, а акцептором - цитохром с. Цитохром с находится с внешней стороны внутренней мембраны митохондрий; там же располагается активный центр цитохрома с1 с которого электроны переносятся на цитохром с. АТФ-синтаза - интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи. АТФ-синтаза состоит из 2 белковых комплексов. Повышение концентрации протонов в межмембранном пространстве активирует АТФ-синтазу. Электрохимический потенциал ΔμH+ заставляет протоны двигаться по каналу АТФ-синтазы в матрикс. Параллельно под действием ΔμH+ происходят конформационные изменения в парах α, β-субъединиц белка F1, в результате чего из АДФ и неорганического фосфата образуется АТФ. Электрохимический потенциал, генерируемый в каждом из 3 пунктов сопряжения в ЦПЭ, используют для синтеза одной молекулы АТФ.
β-окисление жирных кислот. Локализация и химизм этого процесса. Энергетический выход. Какова судьба ацетил-КоА, образующегося при β-окислении?
Основной путь расщепления ЖК - Β-окисление – последовательное отщепление двухуглеродных ферментов. Локализация в матриксе митохондрий. Этапы β-окисления:
1)Активация ЖК в ЦП. Фермент: ацил-коА-синтетаза
2) Транспорт ацильной группы в митохондрии. Переносчик – карнитин:
(СН3
)3–N-CH2–CHOH-CH2-COOH. Фермент:
карнитин-ацилтрансфераза.
3) Β-окисление (4 реакции) – происходит окисление ацильного остатка по β-углеродному атому и отщепление 2х углеродных фрагмента в форме ацетил-kоА.
*
Окисление
ацил-kоА(дегидрогенизация). Ф-т:
ацил-kоА-дегидрогеназа
•
Гидратация
транс-еноил-kоА. Ф-т: еноил-kоА-гидратаза
•
Окисление
β-гидроксиацил-коА. Ф-т:
β-гидроксиацил-kоА-дегидротаза
• Перенос ацильного остатка на HS-koA. Ф-т: ацетил коА-ацетилтрансфераза
Энергетический баланс: ((n/2-1)*5АТФ + n/2*12АТФ) – 1АТФ,
где n – число углеродных атомов в ЖК, (n/2-1) – число циклов β–окисления; n/2 – число образующихся молекул ацетил-коА.
Образовавшийся в процессе β-окисления ЖК ацетил-КоА далее поступает в цикл Кребса и окисляется.
