- •1.Классификация состояний технических объектов
- •2.Системы технического зрения. (Схема и способы сегментации) стз
- •3 Системы технического зрения. (Сравнение изображения с эталоном и топографи-
- •4. Техническия диагностика (тд) на различных стадиях жизненногоцикла смэ.
- •5 Общая классификация методов нк(неразрушающего контроля)
- •6.Приборы нк. Приборы визуализации изображений в нк
- •8.Радиоактивные и радиационные методы. (Электронная дефектоскопия – радио-
- •9.Ренгеновская микроскопия.
- •10. Электронная микроскопия (Осовные характеристики и принцип действия).
- •11. Электронная микроскопия. (Просвечивающий микроскоп).
- •Электронная микроскопия. (Растровая микроскопия).
- •Принцип действия ионного микроскопа.
- •Принцип действия туннельного микроскопа.
- •Принцип действия силового микроскопа.
- •Теоретические основы оптических методов нк
- •Классификация оптических методов нк
- •Оптическая (световая) микроскопия.
- •19.Измерительный контроль в оптической (световой) микроскопии (Лазерный сканирующий микроскопы).
- •20 Измерительный контроль в оптической (световой) микроскопии (Телевизионные микроскоп.).
- •21, Прямой контроль в оптической (световой) микроскопии
- •22. Микроинтерферометрия
- •23.Контроль толщины диэлек плёнок интерференц методами
- •24.Голографическая интерферометрия.
- •25. Разновидности спектральных методов нк:
- •26. Спектральные приборы
- •27. Фурье спектрометры
- •28.Эллипсометрия. (Поляризация света)
- •29. Эллипсометрия. (Контроль тонкоплёночных структур)
- •30. Эллипсометрия (Элипсометр)
- •31. Эллипсометрия. (Микроскоп)
- •32. Классификация методов тепловой дефектоскопии
- •33. Модель активного теплового контроля.
- •34. Модель пассивного теплового контроля
- •35. Оптическая пирометрия.
- •36. Приборы теплового контроля.
- •37. Системы прямой визуализации тепловых полей.
- •38. Системы промышленного тепловидения.
- •39. Радиоволновые методы нк.
- •40. Нк с использованием вихревых токов.
- •41. Акустические методы и средства нк. (Акустическая дефектоскопия.)
- •42. Акустические методы и средства нк. (Акустическая эмиссия)
- •43. Акустические методы и средства нк .(Методы акустографии.)
- •44. Акустические методы и средства нк .(Методы акустодефектоскопии.)
- •45. Акустическая микроскопия.
- •Акустоголографическая и лазерная система диагностирования.
- •Магнитные методы нк и дефектоскопии.(Принципы магнитной дефектоскопии.)
- •Магнитные методы нк и дефектоскопии.(Этапы методов магнитной дефектоскопии.)
- •1.Циркулярное намагничивание
- •2.Продольное намагничивание
- •3.Комбинированное намагничивание герца до 50...100 Гц
- •Магнитные методы нк и дефектоскопии.(Дефектоскопы.)
- •Магнитные толщиномеры.
- •Приборы для исследования и контроля структуры и характеристик ферромагнитных материалов
- •Электрические методы нк и дефектоскопии.(Электроразрядный метод дефектоскопии.)
- •Электропараметрические методы нк и диагностики радиоэлементов.(Оценка по уровню третьей гармоники.)
- •Электропараметрические методы нк и диагностики радиоэлементов.(Оценка по уровню собственных шумов.)
- •56. Автоматизированные компьютер системы для нк. (рентгеновск томограф)
- •58, Осн принцип поиска неисправностей в рэс с приведенной последовательной структурой.
- •59 Оптимизация комбинир поиска неисправн по относит вероятностям сост
- •62. Поиск неисправностей в сложных аналоговых структурах с использованием их структурных моделей.
- •Р ис. 13.13. Функциональная модель рэс с разветвлённой структурой
- •64. Разновидность цифровых устройств и их неисправностей.
- •65. Функциональный и тестовый контроль цифровых устройств.
- •66. Поиск неисправностей в комбинационных схемах методом активизации одномерного пути
- •67. Диагностика цифровых устройств методом логического анализа
- •68. Диагностика цифровых устройств методом сигнатурного анализа.
- •69.Особенности внутрисхемного (поэлементного) контроля цифровых устройств. Диагностика и отладка цифровых устройств методом внутрисхемной эмуляции.
- •70.Встроенный контроль и диагностика цифровых устройств. (Схемы контроля с избыточным дублированием аппаратной части иизбыточным кодированием операций.)
- •71.Встроенный контроль и диагностика цифровых устройств. (Метод псевдодублирования)
- •73. Методы поиска неисправностей (Метод внешних проявлений)
- •74. Методы поиска неисправностей (Метод анализа монтажа)
- •75. Методы поиска неисправностей (Методы измерений и чёрного ящика)
- •76. Методы поиска неисправностей (Метод замены)
- •77. Методы поиска неисправностей (Метод воздействия)
- •78. Методы поиска неисправностей (Методы электропрогона и простукивания)
- •79. Методики регулировки смэ.
- •80. Виды ремонта.
- •81. Системы автоматизации диагностирования.
10. Электронная микроскопия (Осовные характеристики и принцип действия).
Основные характеристики микроскопов: Разрешающая способность микроскопа - это минимальное расстояние между ближайшими точками, при котором их ещё можно наблюдать раздельно.
Глубина резкости - это расстояние вдоль оптической оси, на котором расфокусировка (т.е. неточность установки объектива по отношению к объекту и его изображению) не влияет на разрешающую способность:
Увеличение любого микроскопа равно отношению размера, разрешаемого невооружённым глазом (0.2 мм) к размеру наименьшей детали изображения, разрешаемого микроскопом.
Увеличение разрешающей способности микроскопа путём уменьшения длины волны привело к положительному результату. Микроскопы, использующие УФ - лучи, позволяют увеличить разрешающую способность примерно в два раза. Переход к микроскопии, использующей рентгеновские лучи, позволяет ещё более резко увеличить разрешающую способность.
Принцип действия электронных микроскопов В настоящее время различают просвечивающую электронную микроскопию (ПЭМ) и растровую электронную микроскопию (РЭМ).
Просвечивающий (трансмиссионный) электронный микроскоп (ПЭМ) — это устройство, в котором изображение от ультратонкого образца (толщиной порядка 0,1 мкм) формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране, фотоплёнке или сенсорном приборе с зарядовой связью. ПЭМ состоит из нескольких компонентов: -вакуумная система; -источник электронов (электронный прожектор, электронная пушка) для генерирования электронного потока; -источник высокого напряжения для ускорения электронов; -набор электромагнитных линз и электростатических пластин для управления и контроля электронного луча; -экран, на который проецируется увеличенное электронное изображение (постепенно выходит из употребления, заменяясь детекторами цифрового изображения).
Растровый электронный микроскоп (РЭМ) — прибор класса электронный микроскоп, предназначенный для получения изображения поверхности объекта с высоким (до 0,4 нанометра) пространственным разрешением, также информации о составе, строении и некоторых других свойствах приповерхностных слоёв. Основан на принципе взаимодействия электронного пучка с исследуемым веществом. В её основе лежат физические явления, наблюдающиеся при бомбардировке поверхности твёрдого тела пучком электронов с энергией до нескольких десятков килоэлектронвольт, разворачиваемым в двумерный растр на поверхности исследуемого образца. Современный РЭМ позволяет работать в широком диапазоне увеличений приблизительно от 10 крат до 1 000 000 крат, что приблизительно в 500 раз превышает предел увеличения лучших оптических микроскопов.
11. Электронная микроскопия. (Просвечивающий микроскоп).
Просвечивающий электронный микроскоп представляет собой вакуумную камеру, изготовленную в виде вертикально расположенной колонны. Вдоль центральной оси этой колонны сверху вниз внутри колонны расположены электронный прожектор, определенный набор электрических катушек с проводом - электрических магнитов, выполняющих роль электромагнитных линз для пучка электронов, проходящего вдоль центральной оси колонны до ее основания, и флуоресцирующего экрана, поверхность которого бомбардируют электроны пучка.
ПЭМ является фактическим аналогом светового микроскопа. Его схема показана на рис.4.2. Исследуемый образец располагается в области объективной линзы 5. Проекционная и промежуточная линзы выполняют функцию окуляра. Изображение формируется на флуоресцирующем экране.
Рис. 4.2. Схема просвечивающего электронного микроскопа:
1 - катод, 2 - управляющий электрод, 3 - анод, 4 - конденсорная линза, 5 - объектная линза, 6 - апертурная диафрагма, 7 - селекторная диафрагма, 8 - промежуточная линза, 9 - проекционная линза, 10 – экран
Объект АВ располагают обычно на микросетке. Проходя через объект, электроны рассеиваются в некоторый телесный угол, который ограничивается апертурой диафрагмой объектной линзы. Изображение объекта, формируемое объектной линзой (А’В’) увеличивается промежуточной (А’’В’’) и проекционной (А’’’В’’’) линзами. Контраст изображения обуславливается поглощением (амплитудный контраст) и рассеянием (фазовый контраст) электронов в объекте
В ПЭМ объект исследования должен пропускать пучок электронов. Первостепенная задача исследователя - обеспечение двух условий: малой толщины образца и избирательного взаимодействия электронов с разными деталями образца. Микроскоп снабжается камерой, в объёме которой создаётся необходимый вакуум (10-5 - 10-6 Па). Ускоряющее напряжение, прикладываемое между катодом и анодом, находится в пределах от 20 до 200 кВ, что обеспечивает режим работы «на просвет». В РЭМ это напряжение значительно меньше (до 20 кВ). Весьма эффективно применение ПЭМ для анализа микроструктуры материалов, установление в ней нарушений, контроля правильности заполнения узлов кристаллической решётки, наличия пустот, дислокаций и т.д.
