Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Sobchuk_Nachalo.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.56 Mб
Скачать

31. Эллипсометрия. (Микроскоп)

Эллипсометрия - метод неразрушающего контроля состояния поверхности полупроводниковых пластин, параметров тонких поверхностных слоёв и границ раздела между ними, основанный на анализе изменения поляризации пучка поляризованного монохроматического света при его отражении от исследуемого объекта. Т.к. обычно измеряются параметры эллиптически поляризованного света, метод назван эллипсометрическим или просто эллипсометрией.

Рис. 5.48. Оптическая схема эллипсометрического микроскопа ЛЭМ-3:

1 - Не-Nе лазер; 2 - четвертьволновая пластина; 3 - поляризатор; 4 - электродвигатель; 5 - модулятор: 6 - компенсатор (четвертволновая пластина); 7 - объективы; 8 - анализатор; 9 - фотоэлемент; 10 - электронный блок; 11 - ВКУ; 12 - видикон; 13 - фотоаппарат; 14 - исследуемый образец.

При получении с помощью системы эллипсометрических изображений гасятся только составляющие пучки света, отраженные от участков исследуемого образца, имеющих одинаковые параметры. Это позволяет оценить равномерность распределения контролируемых параметров (например, толщины плёнки) в исследуемых структурах (рис. 5.48). Соответствующие участки эллипсометрического изображения на экране выглядят темными, остальные - светлыми.

Эллипсометрические методы контроля широко используются на следующих этапах разработки, исследования и контроля технологических процессов полупроводникового производства: контроль подготовки поверхности пластин, фотолитографических и электрохимических процессов, изучении электрофизических свойств полупроводниковых материалов; исследование нарушенных и ионноимплантированных слоёв полупроводников и диэлектриков; измерение толщины и показателей преломления диэлектрических плёнок и параметров эпитаксиальных структур; анализ явлений, возникающих на поверхности пластин при диффузии и термообработке.

32. Классификация методов тепловой дефектоскопии

В основе всех тепловых методов дефектоскопии лежит связь между тепловым потоком от объекта и неоднородностью температурного распределения на его поверхности, которая возникает при наличии дефектов в исследуемом объекте.

В зависимости от наличия или отсутствия внешнего источника энергии различают активный и пассивный способы тепловой дефектоскопии.

Активные способы предназначены для обнаружения дефектов типа нарушения сплошности, изменений в структуре и физико-химических свойствах объектов. Такие дефекты обычно называют пассивными, т.е. не выделяющими тепла. Пассивные способы пригодны для контроля тепловых режимов и обнаружения активных дефектов, т.е. наиболее интенсивно выделяющих тепловую энергию.

В зависимости от взаимного расположения источника нагрева, термочувствительного элемента и объекта контроля, а также последовательности контрольных операций различают односторонний, двухсторонний, комбинированный (таб.6.1), синхронный и несинхронный способы теплового неразрушающего контроля. Кроме этого способы теплового контроля делят на статические и динамические. В этом случае определяющим фактором является зависимость температуры объекта от времени.

В задачах теплового контроля обычно исследуют поверхностные температурные поля объектов. Определение внутренних температур, как правило, затруднительно из-за непрозрачности объектов для ИК-излучения. Однако внутренние температурные неоднородности, характеризующие дефектность изделий, можно определить в численном виде с помощью моделирования их на ЭВМ.

Наличие дефектов приводит к локальному или интегральному искажению температурного поля, характерного для данного изделия. Это выражается в появлении перепадов температуры. Пространственно-временная функция этих перепадов определяется температурой тела, условиями его теплообмена с окружающей средой, геометрическими и теплофизическими характеристиками объекта контроля и самих дефектов, а также временем в динамическом режиме.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]