- •1.Классификация состояний технических объектов
- •2.Системы технического зрения. (Схема и способы сегментации) стз
- •3 Системы технического зрения. (Сравнение изображения с эталоном и топографи-
- •4. Техническия диагностика (тд) на различных стадиях жизненногоцикла смэ.
- •5 Общая классификация методов нк(неразрушающего контроля)
- •6.Приборы нк. Приборы визуализации изображений в нк
- •8.Радиоактивные и радиационные методы. (Электронная дефектоскопия – радио-
- •9.Ренгеновская микроскопия.
- •10. Электронная микроскопия (Осовные характеристики и принцип действия).
- •11. Электронная микроскопия. (Просвечивающий микроскоп).
- •Электронная микроскопия. (Растровая микроскопия).
- •Принцип действия ионного микроскопа.
- •Принцип действия туннельного микроскопа.
- •Принцип действия силового микроскопа.
- •Теоретические основы оптических методов нк
- •Классификация оптических методов нк
- •Оптическая (световая) микроскопия.
- •19.Измерительный контроль в оптической (световой) микроскопии (Лазерный сканирующий микроскопы).
- •20 Измерительный контроль в оптической (световой) микроскопии (Телевизионные микроскоп.).
- •21, Прямой контроль в оптической (световой) микроскопии
- •22. Микроинтерферометрия
- •23.Контроль толщины диэлек плёнок интерференц методами
- •24.Голографическая интерферометрия.
- •25. Разновидности спектральных методов нк:
- •26. Спектральные приборы
- •27. Фурье спектрометры
- •28.Эллипсометрия. (Поляризация света)
- •29. Эллипсометрия. (Контроль тонкоплёночных структур)
- •30. Эллипсометрия (Элипсометр)
- •31. Эллипсометрия. (Микроскоп)
- •32. Классификация методов тепловой дефектоскопии
- •33. Модель активного теплового контроля.
- •34. Модель пассивного теплового контроля
- •35. Оптическая пирометрия.
- •36. Приборы теплового контроля.
- •37. Системы прямой визуализации тепловых полей.
- •38. Системы промышленного тепловидения.
- •39. Радиоволновые методы нк.
- •40. Нк с использованием вихревых токов.
- •41. Акустические методы и средства нк. (Акустическая дефектоскопия.)
- •42. Акустические методы и средства нк. (Акустическая эмиссия)
- •43. Акустические методы и средства нк .(Методы акустографии.)
- •44. Акустические методы и средства нк .(Методы акустодефектоскопии.)
- •45. Акустическая микроскопия.
- •Акустоголографическая и лазерная система диагностирования.
- •Магнитные методы нк и дефектоскопии.(Принципы магнитной дефектоскопии.)
- •Магнитные методы нк и дефектоскопии.(Этапы методов магнитной дефектоскопии.)
- •1.Циркулярное намагничивание
- •2.Продольное намагничивание
- •3.Комбинированное намагничивание герца до 50...100 Гц
- •Магнитные методы нк и дефектоскопии.(Дефектоскопы.)
- •Магнитные толщиномеры.
- •Приборы для исследования и контроля структуры и характеристик ферромагнитных материалов
- •Электрические методы нк и дефектоскопии.(Электроразрядный метод дефектоскопии.)
- •Электропараметрические методы нк и диагностики радиоэлементов.(Оценка по уровню третьей гармоники.)
- •Электропараметрические методы нк и диагностики радиоэлементов.(Оценка по уровню собственных шумов.)
- •56. Автоматизированные компьютер системы для нк. (рентгеновск томограф)
- •58, Осн принцип поиска неисправностей в рэс с приведенной последовательной структурой.
- •59 Оптимизация комбинир поиска неисправн по относит вероятностям сост
- •62. Поиск неисправностей в сложных аналоговых структурах с использованием их структурных моделей.
- •Р ис. 13.13. Функциональная модель рэс с разветвлённой структурой
- •64. Разновидность цифровых устройств и их неисправностей.
- •65. Функциональный и тестовый контроль цифровых устройств.
- •66. Поиск неисправностей в комбинационных схемах методом активизации одномерного пути
- •67. Диагностика цифровых устройств методом логического анализа
- •68. Диагностика цифровых устройств методом сигнатурного анализа.
- •69.Особенности внутрисхемного (поэлементного) контроля цифровых устройств. Диагностика и отладка цифровых устройств методом внутрисхемной эмуляции.
- •70.Встроенный контроль и диагностика цифровых устройств. (Схемы контроля с избыточным дублированием аппаратной части иизбыточным кодированием операций.)
- •71.Встроенный контроль и диагностика цифровых устройств. (Метод псевдодублирования)
- •73. Методы поиска неисправностей (Метод внешних проявлений)
- •74. Методы поиска неисправностей (Метод анализа монтажа)
- •75. Методы поиска неисправностей (Методы измерений и чёрного ящика)
- •76. Методы поиска неисправностей (Метод замены)
- •77. Методы поиска неисправностей (Метод воздействия)
- •78. Методы поиска неисправностей (Методы электропрогона и простукивания)
- •79. Методики регулировки смэ.
- •80. Виды ремонта.
- •81. Системы автоматизации диагностирования.
31. Эллипсометрия. (Микроскоп)
Эллипсометрия - метод неразрушающего контроля состояния поверхности полупроводниковых пластин, параметров тонких поверхностных слоёв и границ раздела между ними, основанный на анализе изменения поляризации пучка поляризованного монохроматического света при его отражении от исследуемого объекта. Т.к. обычно измеряются параметры эллиптически поляризованного света, метод назван эллипсометрическим или просто эллипсометрией.
Рис. 5.48. Оптическая схема эллипсометрического микроскопа ЛЭМ-3:
1 - Не-Nе лазер; 2 - четвертьволновая пластина; 3 - поляризатор; 4 - электродвигатель; 5 - модулятор: 6 - компенсатор (четвертволновая пластина); 7 - объективы; 8 - анализатор; 9 - фотоэлемент; 10 - электронный блок; 11 - ВКУ; 12 - видикон; 13 - фотоаппарат; 14 - исследуемый образец.
При получении с помощью системы эллипсометрических изображений гасятся только составляющие пучки света, отраженные от участков исследуемого образца, имеющих одинаковые параметры. Это позволяет оценить равномерность распределения контролируемых параметров (например, толщины плёнки) в исследуемых структурах (рис. 5.48). Соответствующие участки эллипсометрического изображения на экране выглядят темными, остальные - светлыми.
Эллипсометрические методы контроля широко используются на следующих этапах разработки, исследования и контроля технологических процессов полупроводникового производства: контроль подготовки поверхности пластин, фотолитографических и электрохимических процессов, изучении электрофизических свойств полупроводниковых материалов; исследование нарушенных и ионноимплантированных слоёв полупроводников и диэлектриков; измерение толщины и показателей преломления диэлектрических плёнок и параметров эпитаксиальных структур; анализ явлений, возникающих на поверхности пластин при диффузии и термообработке.
32. Классификация методов тепловой дефектоскопии
В основе всех тепловых методов дефектоскопии лежит связь между тепловым потоком от объекта и неоднородностью температурного распределения на его поверхности, которая возникает при наличии дефектов в исследуемом объекте.
В зависимости от наличия или отсутствия внешнего источника энергии различают активный и пассивный способы тепловой дефектоскопии.
Активные способы предназначены для обнаружения дефектов типа нарушения сплошности, изменений в структуре и физико-химических свойствах объектов. Такие дефекты обычно называют пассивными, т.е. не выделяющими тепла. Пассивные способы пригодны для контроля тепловых режимов и обнаружения активных дефектов, т.е. наиболее интенсивно выделяющих тепловую энергию.
В зависимости от взаимного расположения источника нагрева, термочувствительного элемента и объекта контроля, а также последовательности контрольных операций различают односторонний, двухсторонний, комбинированный (таб.6.1), синхронный и несинхронный способы теплового неразрушающего контроля. Кроме этого способы теплового контроля делят на статические и динамические. В этом случае определяющим фактором является зависимость температуры объекта от времени.
В задачах теплового контроля обычно исследуют поверхностные температурные поля объектов. Определение внутренних температур, как правило, затруднительно из-за непрозрачности объектов для ИК-излучения. Однако внутренние температурные неоднородности, характеризующие дефектность изделий, можно определить в численном виде с помощью моделирования их на ЭВМ.
Наличие дефектов приводит к локальному или интегральному искажению температурного поля, характерного для данного изделия. Это выражается в появлении перепадов температуры. Пространственно-временная функция этих перепадов определяется температурой тела, условиями его теплообмена с окружающей средой, геометрическими и теплофизическими характеристиками объекта контроля и самих дефектов, а также временем в динамическом режиме.
