- •3. Физические основы дистанционного зондирования в оптическом
- •5. Отражательная способность поверхности
- •6. Наблюдение растительного и снегового покрова
- •7. Сведения о составе атмосферы
- •8. Ослабление и рассеяние восходящего излучения в атмосфере
- •9. Оптические методы излучения
- •10. Сканер с цилиндрической и с линейной разверткой
- •11. Как устроены сканеры с цилиндрической и линейной разверткой
- •12. Что такое мгновенное поле зрения
- •13. Что такое пространственное разрешение сканера
- •14. Охарактеризуйте принцип работы радиолокатора бокового обзора
- •15. Опишите принцип синтеза апертуры
- •16. Что такое солнечно-синхронная орбита
- •17. Опишите орбиты космических аппаратов
- •18. Спутники с низким пространственным разрешением
- •19. Спутники со средним пространственным разрешением
- •20. Спутники с высоким пространственным разрешением
- •21. Перечислите длины волн спектральных каналов сканера avhrr
- •22. Почему спутники среднего и высокого разрешения не обеспечивают
- •23. Каково назначение спектральных каналов сканера modis спутников
- •24. Особенности распространения радиоволн на трассе спутник-Земля
- •25. Назовите причины, ограничивающие скорость передачи информации
- •26. Геометрические искажения спутниковых изображений
- •27. Геометрическая коррекция и топографическая привязка спутниковых изображений
- •28. Что такое радиометрическая коррекция
- •29. Что такое атмосферная коррекция
- •30. В чем причины искажения изображений, передаваемых со спутников
- •31. Опишите виды изображений
- •32. Ввод изображений с помощью настольного сканера
- •33. Что такое современные мониторы
- •34. Струйный и лазерный принтеры
- •35. Предложите математические модели линейного и точечного изображений.
- •37. Структура графического файла
- •38. В чем особенности применения растровой и векторной графики-Преимущества векторного способа описания графики над растровой графикой
- •39. Что такое групповое кодирование
- •40. Для чего применяется формат cmyk
- •41. Какие статистические характеристики изображения описывают его
- •42. Модель искаженного изображения
- •43. Дополнительные средства обработки изображений
- •44. Опишите спутника Ikonos-Спутник ikonos
- •45. Назовите виды спутника Landsat
- •Решаемые задачи:
- •46. Охарактеризуйте спутника KazSat
- •Основные технические данные
- •47. Физические основы дистанционного зондирования в оптическом
- •48. Пассивные и активные методы дистанционного зондирования.
- •49. Отражательная способность поверхности
- •50. Сведения о составе атмосферы
- •51. Ослабление и рассеяние восходящего излучения в атмосфере
- •52. Оптические методы излучения
- •53. Опишите орбиты космических аппаратов
- •54. Особенности технологии дистанционного зондирования.
- •55. История развития дистанционного зондирования Земли
- •57. Геометрические искажения спутниковых изображений
- •58. Опишите виды изображений
13. Что такое пространственное разрешение сканера
Пространственное разрешение ΔL зависит от параметров оптической системы и от расстояния L от спутника до объекта: ΔL наилучшее (минимальное) в подспутниковой точке (надире), когда расстояние L минимально и равно высоте спутника над Землей. При отклонении от надира у сканеров с цилиндрической и линейной разверткой L увеличивается и разрешение становится хуже. Разрешение сканера AVHRR спутника NOAA в надире ΔL = 1,1 км, при максимальном отклонении сканера от направления в надир разрешение становится равным приблизительно 4 км. Сканер HRVIR спутника SPOT-4 имеет разрешение в надире ΔL = 10 и 20 м. В объективах сканеров используется, как правило, зеркальная оптика. Линзовая оптика нежелательна, так как показатели преломления и поглощения света в линзах различны для различных длин волн, а сканер должен работать в широком диапазоне – от видимого участка до инфракрасного. Зеркальные объективы имеют вогнутое зеркало параболической формы, на внутреннюю поверхность которого нанесена тонкая отражающая металлическая пленка. Свет, отраженный основным зеркалом, попадает на площадку, где в фокальной плоскости объектива размещены фотоприемники. Мгновенное поле зрения Δϕ определяется размером апертуры объектива и размерами фотоприемника. Апертура (действующее отверстие оптической системы) для параболического зеркала – это круг диаметра D, замыкающий зеркало. При малых значениях мгновенного поля зрения его величина приближенно Δϕ = λ/D, а пространственное разрешение составляет ΔL ∼ λ·L/D, где λ −длина волны.
14. Охарактеризуйте принцип работы радиолокатора бокового обзора
Радиолокаторы космического базирования работают в микроволновом диапазоне, обычно на длинах волн короче 30 см. Как и в оптическом диапазоне, используются окна прозрачности атмосферы. Например, работа не ведется вблизи линий поглощения кислорода (1,35 см) и водяного пара (5 мм). Принцип импульсной радиолокации в общих чертах состоит в следующем. На спутнике устанавливается передатчик, посылающий с помощью антенны в направлении Земли импульсы с высокочастотным заполнением (рис. 3.3). После этого наступает пауза, в течение которой производится прием отраженных сигналов. Если импульс отражается от некоторого объекта, расположенного на расстоянии L от спутника, то он вернется назад через интервал времени Δt = 2L/c, где с − скорость света, множитель 2 учитывает, что сигнал проходит путь L дважды. Чем дальше объект от радиолокатора, тем больше Δt.
Сигналы от различных объектов приходят в разное время, это автоматически реализует сканирование по дальности. Измеряя Δt, можно найти расстояние до объекта. Интенсивность отраженных сигналов зависит от дальности и различна для разных объектов, так как они отличаются размерами и электрофизическими характеристиками.
15. Опишите принцип синтеза апертуры
Идея РСА, в принципе, достаточно проста. В РСА используется движение самого спутника и установленной на нем антенны с реальной апертурой (скорость более 7 км/с). Сигналы, принятые антенной, запоминаются и далее суммируются (накапливаются) компьютером, так что сигнал от объекта М, принятый в точке Р (рис. 3.5) в момент времени ti, складывается с сигналом от этого же объекта, который ранее принимался в момент tm, когда спутник находился в точке Р'.
