- •3. Физические основы дистанционного зондирования в оптическом
- •5. Отражательная способность поверхности
- •6. Наблюдение растительного и снегового покрова
- •7. Сведения о составе атмосферы
- •8. Ослабление и рассеяние восходящего излучения в атмосфере
- •9. Оптические методы излучения
- •10. Сканер с цилиндрической и с линейной разверткой
- •11. Как устроены сканеры с цилиндрической и линейной разверткой
- •12. Что такое мгновенное поле зрения
- •13. Что такое пространственное разрешение сканера
- •14. Охарактеризуйте принцип работы радиолокатора бокового обзора
- •15. Опишите принцип синтеза апертуры
- •16. Что такое солнечно-синхронная орбита
- •17. Опишите орбиты космических аппаратов
- •18. Спутники с низким пространственным разрешением
- •19. Спутники со средним пространственным разрешением
- •20. Спутники с высоким пространственным разрешением
- •21. Перечислите длины волн спектральных каналов сканера avhrr
- •22. Почему спутники среднего и высокого разрешения не обеспечивают
- •23. Каково назначение спектральных каналов сканера modis спутников
- •24. Особенности распространения радиоволн на трассе спутник-Земля
- •25. Назовите причины, ограничивающие скорость передачи информации
- •26. Геометрические искажения спутниковых изображений
- •27. Геометрическая коррекция и топографическая привязка спутниковых изображений
- •28. Что такое радиометрическая коррекция
- •29. Что такое атмосферная коррекция
- •30. В чем причины искажения изображений, передаваемых со спутников
- •31. Опишите виды изображений
- •32. Ввод изображений с помощью настольного сканера
- •33. Что такое современные мониторы
- •34. Струйный и лазерный принтеры
- •35. Предложите математические модели линейного и точечного изображений.
- •37. Структура графического файла
- •38. В чем особенности применения растровой и векторной графики-Преимущества векторного способа описания графики над растровой графикой
- •39. Что такое групповое кодирование
- •40. Для чего применяется формат cmyk
- •41. Какие статистические характеристики изображения описывают его
- •42. Модель искаженного изображения
- •43. Дополнительные средства обработки изображений
- •44. Опишите спутника Ikonos-Спутник ikonos
- •45. Назовите виды спутника Landsat
- •Решаемые задачи:
- •46. Охарактеризуйте спутника KazSat
- •Основные технические данные
- •47. Физические основы дистанционного зондирования в оптическом
- •48. Пассивные и активные методы дистанционного зондирования.
- •49. Отражательная способность поверхности
- •50. Сведения о составе атмосферы
- •51. Ослабление и рассеяние восходящего излучения в атмосфере
- •52. Оптические методы излучения
- •53. Опишите орбиты космических аппаратов
- •54. Особенности технологии дистанционного зондирования.
- •55. История развития дистанционного зондирования Земли
- •57. Геометрические искажения спутниковых изображений
- •58. Опишите виды изображений
52. Оптические методы излучения
Первые изображения Земли из космоса были получены с помощью фотокамеры, эта методика применятся и в настоящее время. Спутник с фоторегистрацией «Ресурс-Ф1М» (Россия) позволяет фотографировать Землю в интервале длин волн от 0,4 до 0,9 мкм. Отснятые материалы спускаются на Землю и проявляются. Анализ снимков, как правило, проводится помощью проекционной аппаратуры. Метод обеспечивает высокую геометрическую точность изображения и возможность увеличения снимков. Однако он обладает низкой оперативностью; изображение представлено в виде фотографий, а не в цифровой форме; диапазон спектра ограничен видимым участком и ближним ИК. Этих недостатков лишены сканерные методы. Сканер с цилиндрической разверткой содержит объектив с точечным фотоприемным устройством (фотоэлектронный умножитель, фотодиод, фоторезистор). Перед объективом качается (вращается) зеркало, отражение от которого попадает на фотоприемное устройство (рис. 3.1). При качании (вращении) зеркала и движении аппарата над Землей построчное считывается сигнал, пропорционального освещенности в того участка земной поверхности, на который в данный момент направлено зеркало. С помощью фотодиода регистрируется излучение в ультрафиолетовом, видимом и ближнем ИК-диапазоне, с помощью фоторезистора регистрируется излучение в тепловом ИК-диапазоне и оценивается температура поверхности Земли. Сканерная информация в цифровой форме передается со спутника по радио в реальном времени или в записи на бортовой накопитель; на Земле она обрабатывается на ЭВМ.
53. Опишите орбиты космических аппаратов
Положение восходящего узла определяется долготой восходящего узла, т.е. углом Ω между восходящим узлом и точкой весеннего равноденствия, отсчитываемым против часовой стрелки, если смотреть со стороны Северного полюса. Относительно линии узлов задают два угла в плоскости орбиты. Угол ω − угловое расстояние, отсчитываемое от восходящего узла в плоскости орбиты до перигея орбиты П, т. е. ближайшей к Земле точки орбиты спутника; ω называют аргументом перигея. Угол i между плоскостью орбиты и плоскостью экватора называется наклонением орбиты. Угол i отсчитывается от плоскости экватора, с восточной стороны восходящего узла орбиты, против движения часовой стрелки. По наклонению различают экваториальные (I = 0°), полярные (I = 90°) и наклонные орбиты (0 < I < 90°, 90 < I < 180°). Долгота восходящего узла Ω, наклонение i, аргумент перигея ω характеризуют положение плоскости орбиты и ее ориентацию в пространстве. Форму и размер орбиты задают фокальный параметр p и эксцентриситет e. Для привязки движения спутника ко времени в число элементов вводится время прохождения спутником точки начала отсчета t0. Совокупность параметров Ω, ω, i, p, e, t0 называется кеплеровскими элементами, элементами орбиты.
54. Особенности технологии дистанционного зондирования.
При наблюдении Земли из космоса используют дистанционные методы: исследователь получает возможность на расстоянии (дистанционно) получать информацию об изучаемом объекте. Дистанционные методы, как правило, являются косвенными, т. е. измеряются не интересующие параметры объектов, а некоторые связанные с ними величины. Например, нас может интересовать состояние сельхозпосевов. Но аппаратура спутника регистрирует лишь интенсивность светового потока от этих объектов в нескольких участках оптического диапазона. Для того, чтобы «расшифровать» такие данные, требуются предварительные исследования, включающие в себя различные подспутниковые эксперименты: по изучению состояния растений контактными методами; по изучению отражательной способности листьев в различных участках спектра и при различном взаимном расположении источника света (Солнца), листьев и измерительного прибора. Далее необходимо определить, как выглядят те же объекты с самолета и лишь после этого судить о состоянии посевов по спутниковым данным. Необходимо прокалибровать спутниковую аппаратуру перед запуском и в космосе, сравнивать спутниковые данные с наземными. Подспутниковые исследования трудоемки, но проводятся на небольшой площади. В то же время они дают возможность интерпретировать данные, относящиеся к огромным пространствам и даже ко всему земному шару. Широта охвата является характерной чертой спутниковых методов исследования Земли. К тому же эти методы, как правило, позволяют получить результат за сравнительно короткий интервал времени. Для Сибири с её просторами спутниковые методы в настоящее время являются единственно приемлемыми.
.
